
Lessons From Bringing Monads to Elixir
Witchcraft Retrospective

— Alan Perlis, Epigrams in Programming

A [library] that doesn't
change the way you think

is not worth learning

Brooklyn Zelenka @expede
Witchcraft

Brooklyn Zelenka @expede

github.com/expede

Witchcraft

Indie researcher

Local-First, P2P

Esp. E2EE, capabilities, CRDTs, VMs

Author of Quark, Algae, Witchcraft / "Haskell Fan Fiction"

Exceptional and others

Had a ton of fun writing these libraries ⚗🙌💜

Founded the Vancouver Functional Programming Meetup

Brooklyn Zelenka @expede

github.com/expede

Witchcraft

Indie researcher

Local-First, P2P

Esp. E2EE, capabilities, CRDTs, VMs

Author of Quark, Algae, Witchcraft / "Haskell Fan Fiction"

Exceptional and others

Had a ton of fun writing these libraries ⚗🙌💜

Founded the Vancouver Functional Programming Meetup

Brooklyn Zelenka @expede

github.com/expede

Witchcraft

Strange Brew
What is Witchcraft?

⚗

— José Valim, Beyond Functional Programming

[...] functional programming is not a goal
in the Erlang VM [...]

It just happened that the foundation for writing
such systems share many of the functional

programming principles. And it reflects in
both Erlang and Elixir.

— José Valim, Beyond Functional Programming

[...] functional programming is not a goal
in the Erlang VM [...]

It just happened that the foundation for writing
such systems share many of the functional

programming principles. And it reflects in
both Erlang and Elixir.

Don't worry.
We can fix that 😉

Strange Brew

"How Hard Could It Be?"

Strange Brew

"How Hard Could It Be?"

Strange Brew

Motivation

Elixir is awesome, but misses some (built-in) FP features

Heavily side effectful, low on equational reasoning

Simply typed, with bolt-on static analysis

At the time there was no syntax for railroad exceptions

VanFP skill swap: leaning Alchemists leaning Haskell & Haskellers learning Elixir

Strange Brew

What Is?

Started (Quark) around 2014, bulk of the code ~2015

"Classic" & denotational FP idioms

Production use from nearly day one (lots web, but also apparently at least one bank?)

Strange Brew

Strategy
Stay as idiomatic as possible(!!!)

Fill feature gaps

e.g. protocol inheritance, lack of types

Start small (compose) and grow (Arrow.fanout)

Keep it simple™, except when you really need something

Use functions wherever possible

Heavily abuse macros as needed

Strange Brew

Design Principles

Compatibility with Elixir ecosystem

Consistency with mental models

Portability from other ecosystems

Pedagogy and approachability

Strange Brew

Stack

Quark

TypeClassAlgae

Witchcraft

Operator

Strange Brew

Quark

"The basics"

SKI, fixed points

Automatic partial application (defpartial, defcurry)

"Classic" combinators

id, flip, const, and so on

Point-free style using <~>

Useful! Ended up inside of e.g. Exceptional

Strange Brew

Operator

Elixir has fixed set of operators

Enforces best practice: always have a named variant

Pipes get around this in most cases, but nice to have

Strange Brew

Algae

Algaebraic data types

Coproducts, nesting

Probably the most broadly useful library (until first-class types ship)

Since it doesn't really require you to change the style / idioms

Strange Brew

Algae

Strange Brew

TypeClass
Look, it was their fault for putting macros into the language 😉

Elixir has protocols, but no constraint implication

TypeClasses can be "unprincipled", so strong arm use of prop tests (even with a type system,
writing e.g. dependently typed proofs can be a whole thing)

Lesson: Defaults are super powerful

We'll talk about why this was a mistake (that could have been easily fixed) later

Actually used this in a production setting when taking over a project from a team that was
months behind

The only custom code for this data type
(low effort)

Uses your defimpl definitions

Class hierarchy

Uses your defimpl definitions

Strange Brew

Algae
defdata
All of these fields
Roughly “and”

defsum
One of these structs
Roughly “or”

Strange Brew

Algae

Strange Brew

Algae

Strange Brew

Algae

Strange Brew

Witchcraft
"The main show"

No way to enforce purity 😭

Async variants

map and async_map

One way of thinking about Elixir is that it's implicitly in IO, or at best Async

Why implicit asyncs instead of a monad?

Differences from Haskell

Pipe order is different

Consistency & Ethos
More than Syntax... but also Syntax

🚰

Consistency & Ethos

What We're Trying to Avoid

Strange Brew

Pipes

Strange Brew

Pipes

Consistency & Ethos

Dataflow & Directionality

Let’s bootstrap people’s intuitions!

Elixir prefers diagrammatic ordering

Important to maintain consistency with rest of language!

Pipes are generally awesome

Want to maintain this awesomeness

What if we just gave the pipe operator superpowers?

data

x * 2

y + 1

|>

|>

2

4

5

Consistency & Ethos

Giving Pipes Superpowers

Witchcraft operators follow same flow

Data on flows through pointed direction

Just like pipes

|> becomes ~> (curried map/2)

[data]

x * 2

y + 1

~>

~>

[1,2,3]

[2,4,6]

[3,5,7]

data

x * 2

y + 1

2

4

5

|>

|>

Consistency & Ethos

Dataflow & Directionality

Operators follow same flow

Data on flows through arrow direction

|> (_)

~> <~

~>> <<~

>>> <<<

M O R E P O W E R
map/2

ap/2

chain/2

apply/2

Consistency & Ethos

Arrows

Consistency & Ethos

Arrows

Consistency & Ethos

Arrows

Consistency & Ethos

Arrows

Functor Tower
Functional & Principled

🗼

— Dijkstra

The purpose of abstraction is not to be
vague, but to create a new semantic level

in which one can be absolutely precise

Design Patterns

Witchcraft v1.0 Hierarchy

Semigroupoid

Category

Arrow

Semigroup

Monoid

Foldable

Traversable

Functor

Apply

Applicative Chain

Monad

Bifunctor

Extend

Comonad

Consistency & Ethos

Functor
Provides map/2 (~>), but different from Enum

Always returns the same type of data

No more manual Enum.map(…)|> Enum.into(…)

Consistency & Ethos

Apply
Provides convey/2 and ap/2

Embellishes basic function application

Specific embellishment changes per data type

Consistency & Ethos

Chain: Functions to Actions
Like Apply & Applicative, but with a special “linking” function

Take raw value

Do something to it

Put the result into the original datatype

Makes it easy to chain functions in a context

Consistency & Ethos

Chaining With do-Notation
Macro to “linearize” chains

Gives us back an operational feel

Great DSLs (seen shortly)

Consistency & Ethos

Monadic do-Notation
Need to specify the data type

Just add return (specialized Applicative.of/2)

Consistency & Ethos

do-Notation Implementation

Consistency & Ethos

Writer Monad

Consistency & Ethos

Writer Monad

Lessons Learned
Some more uncategorised observations

⏮

Lessons Learned

Build It & They Will Come

...but often difficult to coordinate timing, esp. with maintainer burnout

Get more people involved very early — earlier than you think you need to!

Actively hand off credit to others

A "prior art" section in READMEs diffuses many conflicts

All things come down to people and governance

Lessons Learned

Wardley Stages

Lessons Learned

Wardley Stages

Lessons Learned

Wardley Stages

🫥👻

👀🦺

Invention Custom Off-the-Shelf Utility

Lessons Learned

Wardley Stages

🫥👻

👀🦺

Invention Custom Off-the-Shelf Utility

Lessons Learned

Wardley Stages

🫥👻

👀🦺

Invention Custom Off-the-Shelf Utility

💶

Lessons Learned

Wardley Stages

🫥👻

👀🦺

Invention Custom Off-the-Shelf Utility

💶

Lessons Learned

Wardley Stages

🫥👻

👀🦺

Invention Custom Off-the-Shelf Utility

💶

Lessons Learned

Approach in 2024?

Turnstile is pretty great

Type Systems as Macros

(Co)effect systems, capabilities

Branding was always important, but even more now

🎉 Thank You, Fun Prog Sweden 🇸🇪
📝 notes.brooklynzelenka.com
📧 hello@brooklynzelenka.com
🦋 bsky.app/profile/expede.wtf
🐘 @expede@octodon.social

