UCAN& WMFS

What, Why, and Integration \


```
EXAMPLE 2: Minimal self-managed DID Document
  "@context": "https://w3id.org/did/v1",
  "id": "did:example:123456789abcdefghi",
  "publicKey": [{
   "id": "did:example:123456789abcdefghi#keys-1",
   "type": "RsaVerificationKey2018",
   "owner": "did:example:123456789abcdefghi",
    "publicKeyPem": "----BEGIN PUBLIC KEY...END PUBLIC KEY----\r\n"
  }],
  "authentication": [{
   // this key can be used to authenticate as DID ...9938
   "type": "RsaSignatureAuthentication2018",
    "publicKey": "did:example:123456789abcdefghi#keys-1"
  }],
  "service": [{
    "type": "ExampleService",
    "serviceEndpoint": "https://example.com/endpoint/8377464"
```

- One or more public keys
- Truly "universal" user IDs
- Agnostic about backing
 - Self-attesting
 - Database
 - Blockchain
- For users, devices, and more
- Relates to verifiable credentials

```
EXAMPLE 2: Minimal self-managed DID Document
  "@context": "https://w3id.org/did/v1",
  "id": "did:example:123456789abcdefghi",
  "publicKey": [{
   "id": "did:example:123456789abcdefghi#keys-1",
   "type": "RsaVerificationKey2018",
   "owner": "did:example:123456789abcdefghi",
   "publicKeyPem": "----BEGIN PUBLIC KEY...END PUBLIC KEY----\r\n"
 }],
  "authentication": [{
   // this key can be used to authenticate as DID ...9938
   "type": "RsaSignatureAuthentication2018",
   "publicKey": "did:example:123456789abcdefghi#keys-1"
 }],
  "service": [{
   "type": "ExampleService",
   "serviceEndpoint": "https://example.com/endpoint/8377464"
```

did:key&UCAN

"Just" a public key (e.g. RSA, EdDSA)

- "Just" a public key (e.g. RSA, EdDSA)
- Self-certifying, extremely flexible

- "Just" a public key (e.g. RSA, EdDSA)
- Self-certifying, extremely flexible
- Well suited to capabilities/authZ (vs identity/authN)

- "Just" a public key (e.g. RSA, EdDSA)
- Self-certifying, extremely flexible
- Well suited to capabilities/authZ (vs identity/authN)
- Made practical with UCANs
 - did:key → authN
 - UCAN → authZ

Variety

Decentralized Digital Identity Variety

Microsoft ION, 3Box's Ceramic, Sovrin, did:key, and well over 400 others

Decentralized Digital Identity Variety

- Microsoft ION, 3Box's Ceramic, Sovrin, did:key, and well over 400 others
- Can federate, but hasn't been done yet win the wild
 - Fission working towards interop with ION as first step

User Controlled, Local-First, Universal Auth & ID

Fission Use Case → Highly Flexible & Secure

Work directly in a browser without plugins

- Work directly in a browser without plugins
- Browser is hostile compatible with WebCrypto non-exportable keys

- Work directly in a browser without plugins
- Browser is hostile compatible with WebCrypto non-exportable keys
- User controlled / user owned

- Work directly in a browser without plugins
- Browser is hostile compatible with WebCrypto non-exportable keys
- User controlled / user owned
- Pseudonymous, principle of least authority & least visibility

- Work directly in a browser without plugins
- Browser is hostile compatible with WebCrypto non-exportable keys
- User controlled / user owned
- Pseudonymous, principle of least authority & least visibility
- Won't always have access to the "root" device

- Work directly in a browser without plugins
- Browser is hostile compatible with WebCrypto non-exportable keys
- User controlled / user owned
- Pseudonymous, principle of least authority & least visibility
- Won't always have access to the "root" device
- Must work offline

- Work directly in a browser without plugins
- Browser is hostile compatible with WebCrypto non-exportable keys
- User controlled / user owned
- Pseudonymous, principle of least authority & least visibility
- Won't always have access to the "root" device
- Must work offline
- Extensible semantics

- Work directly in a browser without plugins
- Browser is hostile compatible with WebCrypto non-exportable keys
- User controlled / user owned
- Pseudonymous, principle of least authority & least visibility
- Won't always have access to the "root" device
- Must work offline
- Extensible semantics
- Flexible granularity

- Work directly in a browser without plugins
- Browser is hostile compatible with WebCrypto non-exportable keys
- User controlled / user owned
- Pseudonymous, principle of least authority & least visibility
- Won't always have access to the "root" device
- Must work offline
- Extensible semantics
- Flexible granularity
- Revocable

Object Capability Model (OCAP)

Object Capability Model (OCAP)

Object Capability Model (OCAP)

Object Capability Model (OCAP)

Object Capability Model (OCAP)

Object Capability Model (OCAP)

Object Capability Model (OCAP)

- ACL is "reactive auth"
- OCAP is "proactive auth"
 - Contains all the info about access
 - Any guarding done up front (e.g. time limiting)
 - Generally some reference, proof, or key
 - Anything directly created (parenthood)
 - Delegate subset of access to another (introduction)
 - Long history (e.g. X.509, SDSI, SPKI, Macaroons)

- ACL is "reactive auth"
- OCAP is "proactive auth"
 - Contains all the info about access
 - Any guarding done up front (e.g. time limiting)
 - Generally some reference, proof, or key
 - Anything directly created (parenthood)
 - Delegate subset of access to another (introduction)
 - Long history (e.g. X.509, SDSI, SPKI, Macaroons)

- ACL is "reactive auth"
- OCAP is "proactive auth"
 - Contains all the info about access
 - Any guarding done up front (e.g. time limiting)
 - Generally some reference, proof, or key
 - Anything directly created (parenthood)
 - Delegate subset of access to another (introduction)
 - Long history (e.g. X.509, SDSI, SPKI, Macaroons)

- ACL is "reactive auth"
- OCAP is "proactive auth"
 - Contains all the info about access
 - Any guarding done up front (e.g. time limiting)
 - Generally some reference, proof, or key
 - Anything directly created (parenthood)
 - Delegate subset of access to another (introduction)
 - Long history (e.g. X.509, SDSI, SPKI, Macaroons)

- ACL is "reactive auth"
- OCAP is "proactive auth"
 - Contains all the info about access
 - Any guarding done up front (e.g. time limiting)
 - Generally some reference, proof, or key
 - Anything directly created (parenthood)
 - Delegate subset of access to another (introduction)
 - Long history (e.g. X.509, SDSI, SPKI, Macaroons)

Tradeoffs & Hybridization

Tradeoffs & Hybridization

Pure ACL, reactive

- Centrally view who has access to what
- Check on every request, bottleneck
- At-will revocation
- Access rules grow in complexity
- More complex provisioning

Tradeoffs & Hybridization

Pure ACL, reactive

- Centrally view who has access to what
- Check on every request, bottleneck
- At-will revocation
- Access rules grow in complexity
- More complex provisioning

Pure OCAP, proactive

- Works offline & everywhere
- User owned or provisioned
- No resource contention, infinite scale
- Easy interop (as we'll see)
- Principle of least authority
- Revocation more difficult
- Tracking possible but has tradeoffs

UCAN

OAuth Sequence

User Application

Authorization Server

Resource Server

UCAN UCAN Sequence

Revocation Cascade

Revocation Cascade

UCAN ///T

```
"alg": "EdDSA",
  "typ": "JWT"
  "ucv": "0.5.0"
  "aud": "did:key:zStEZpzSMtTt9k2vszgvCwF4fLQQSyA15W5AQ4z3AR6Bx4eFJ5crJFbuGxKmbma4",
  "iss": "did:key:z5C4fuP2DDJChhMBCwAkpYUMuJZdNWWH5NeYjUyY8btYfzDh3aHwT5picHr9Ttjq",
  "nbf": 1611204719,
  "exp": 1611300000,
  "fct": [
      "sha256": "B94D27B9934D3E08A52E52D7DA7DABFAC484EFE37A5380EE9088F7ACE2EFCDE9",
      "msg": "hello world"
  "att": [
      "wnfs": "boris.fission.name/public/photos/",
      "cap": "OVERWRITE"
      "email": "boris@fission.codes",
      "cap": "SEND"
  "prf": [
    eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsInVhdiI6IjAuMS4wIn0.eyJhdWQiOiJkaWQ6a2V5OnpTd"
8XfAytaZS82wHcjoTyoqhMyxXiWdR7Nn7A29DNSl0EiXLdwJ6xC6AfgZWF1bOsS_TuYI3OG85AmiExREkrS6tD
```

Auth Chaining

- OCAP, provable chains, revocable
- Non-exportable 2048-bit RSA (WebCrypto), Ed25519 & BLS everywhere else

Trustless Interop

High Level Auth Topologies

OCAP File Coin & Accounts

Fully Managed (Similar to Today)

BBBB

BLS Cosigner (Self Sovereign)

Delegate-Aware Blockchain

Bonus: Payment Channel Interop

Bonus: Payment Channel Interop

Bonus: Payment Channel Interop


```
UCAN{
    max: 200 $\square$,
    from: $\square$,
    to: $\square$,
    sig: $\square$
}
```

OCAP FileCoin & Accounts

Bonus: Payment Channel Interop


```
UCAN{
    max: 200 $\square$,
    from: $\square$,
    to: $\square$,
    sig: $\square$
}
```

```
sendTx(②, 100⑤, UCAN{
    max: 200⑤,
    from: ②,
    to: ②
    sig: △
})
```

OCAP FileCoin & Accounts

Bonus: Payment Channel Interop

Countersigned Tx!

User Controlled, Serverless, Universal Auth & ID

Read vs Write

VVNFS Layout

VVNFS Layout

alice.fission.name

VVNFS Layout

alice.fission.name

Securing Data Access VVNFS Layout alice.fission.name Public Private Photos Apps **Photos** Apps Family Photos My Gallery Avatars

Securing Data Access VVNFS Layout alice.fission.name Public Shared By Me Private Keys and Photos **Photos** Apps Apps Pointers Family Photos My Gallery Avatars

Securing Data Access VVNFS Layout alice.fission.name Shared w/ Me Shared By Me Public Private Keys and Keys and Photos **Photos** Apps Apps Pointers Pointers Family Photos My Gallery Avatars

Virtual Nodes

Virtual Nodes

Virtual Nodes

Raw Node

Virtual Nodes

Raw Node

Virtual Nodes

Raw Node

- Virtual Node
 - Consistent interface
- Arbitrary metadata
 - Tags, creators, MIME, sources, &c

- Hard links
 - New for the web!
 - Direct reference
 - 2 pointers ~ duplicate

- Hard links
 - New for the web!
 - Direct reference
 - 2 pointers ~ duplicate
- Soft links
 - Like a symlink or web link
 - 2 pointers ~ latest
 - May break
 - Always some version available

- Hard links
 - New for the web!
 - Direct reference
 - 2 pointers ~ duplicate
- Soft links
 - Like a symlink or web link
 - 2 pointers ~ latest
 - May break
 - Always some version available

- Hard links
 - New for the web!
 - Direct reference
 - 2 pointers ~ duplicate
- Soft links
 - Like a symlink or web link
 - 2 pointers ~ latest
 - May break
 - Always some version available

- Hard links
 - New for the web!
 - Direct reference
 - 2 pointers ~ duplicate
- Soft links
 - Like a symlink or web link
 - 2 pointers ~ latest
 - May break
 - Always some version available

- Hard links
 - New for the web!
 - Direct reference
 - 2 pointers ~ duplicate
- Soft links
 - Like a symlink or web link
 - 2 pointers ~ latest
 - May break
 - Always some version available

Securing Data Access Rearranged Photos@r1 Photos@r0 Avatars@r1 Avatars@r0 Vacation caricature.jpg headshot.png beach.png

Private Nodes

Securing Data Access Cryptree

Cryptree &

Securing Data Access Cryptree & Virtual Node Virtual Node Index Metadata Index Metadata name: "beach.jpg", revision: 42,

key: "B374A26A71490437A..."

Securing Data Access Cryptree &

Subtree Read Access

- Ratchet keys for backwards secrecy
 - Spiral ratchet for quick fast forwards

- Ratchet keys for backwards secrecy
 - Spiral ratchet for quick fast forwards

- Ratchet keys for backwards secrecy
 - Spiral ratchet for quick fast forwards

Encrypted Tree is Surprisingly Efficient

Encrypted Tree is Surprisingly Efficient

Encrypted Tree is Surprisingly Efficient

HAMT $16^3 = 4,096$ items (weight 16) $16^4 = 65,536$ items

Encrypted Tree is Surprisingly Efficient

HAMT $16^3 = 4,096$ items (weight 16) $16^4 = 65,536$ items

Encrypted Tree is Surprisingly Efficient

Namefilters & Hidden Paths

Namefilters & Hidden Paths

- Bare Filter
 - parentFilter
 - AND bloom(SHA(aesKey))
 - AND bloom(SHA(aesKey ++ revisionRatchet))
- Saturation
 - nameFilter AND bloom(SHA(nameFilter))
 - Repeat until threshold bits flipped

Rev 0

Rev 0

Securing Data Access *Merkle CRDT*

Securing Data Access Merkle CRDT

- Original paper from PL
- Persistent data structure by default
- Confluent with automated reconciliation
- Innate causal clock via Merkle DAG
- Coarse grained (path-level)

Single File Version Shadow

Async Granting Read & Write

Async Granting Read & Write

Shared by Me

Async Granting Read & Write

Shared by Me

did:key:zStEksDrxkwYmpzqB dAQjjx1PRbHG3fq4ChGeJcYU YU44a4CBUExTTjeCbop6Uur

Async Granting Read & Write

Async Granting Read & Write

Async Granting Read & Write

Shared by Me did:key:zStEksDrxkwYmpzqB dAQjjx1PRbHG3fq4ChGeJcYU YU44a4CBUExTTjeCbop6Uur **Human Readable Name** Symlink

Async Granting Read & Write

Shared with Me