UCAN & WNFS

@ What, Why, and Integration &




Decentralized Digital Identity

DIDS




Decentralized Digital Identity

DIDs

EXAMPLE 2: Minimal self-managed DID Document

{
"@context": "https://w3id.org/did/v1l",
"id": "did:example:123456789%9abcdefghi”,
"publicKey": [{
"id": "did:example:123456789abcdefghi#keys-1",
"type": "RsaVerificationKey2018",
"owner": "did:example:123456789abcdefghi”,
"publicKeyPem": "
H,
"authentication": [{
// this key can be used to authenticate as DID ...9938
"type": "RsaSignatureAuthentication2018",
"publicKey": "did:example:123456789abcdefghi#keys-1"
H,
"service": [{
"type": "ExampleService",
"serviceEndpoint": "https://example.com/endpoint/8377464"

}H




Decentralized Digital Identity

DIDs

. One or more public keys

EXAMPLE 2: Minimal self-managed DID Document

{
DS "@context": "httpS ://w31id.o rg/did/V]-" ’
"id": "did:example:123456789abcdefghi",
"publicKey": [{
| AgnOStIC about baCklﬂg "id": "did:example:123456789abcdefghi#keys-1",
"type": "RsaVerificationKey2018",
"owner": "did:example:123456789%9abcdefghi",

+ Truly "universal” user |

. Se‘f‘atteSting "publicKeyPem": "
H,
"authentication": [{
Database // this key can be used to authenticate as DID ...9938
"type": "RsaSignatureAuthentication2018",
3 ‘ 0OC kC ha | N . "publicKey": "did:example:123456789%abcdefghi#keys—1"
| "service": [{
For users, devices, and more "type": "ExampleService",

"serviceEndpoint": "https://example.com/endpoint/8377464"
+]

Relates to verifiable credentials




Decentralized Digital Identity

did :key & UCAN




Decentralized Digital Identity

did :key & UCAN

+ "Just” a public key (e.g. RSA, EADSA)



Decentralized Digital Identity

did :key & UCAN

+ "Just” a public key (e.g. RSA, EADSA)

. Self-certifying, extremely flexible



Decentralized Digital Identity

did :key & UCAN

. "Just” a public key (e.g. RSA, EADSA)
. Self-certifying, extremely flexible

. Well suited to capabilities/authZ (vs identity/authNj)



Decentralized Digital Identity

did :key & UCAN

. "Just” a public key (e.g. RSA, EADSA)
- Self-certifying, extremely flexible
. Well suited to capabilities/authZ (vs identity/authN)
- Made practical with UCANs
. did:key > authN

. UCAN = authZ



Decentralized Digital Identity

Variety




Decentralized Digital Identity

Variety

. Microsoft ION, 3Box’s Ceramic, Sovrin, did:key, and well over 400 others



Decentralized Digital Identity

Variety

. Microsoft ION, 3Box’s Ceramic, Sovrin, did:key, and well over 400 others
. Can federate, but hasn't been done yet win the wild

- Fission working towards interop with ION as first step



User Controlled, Local-First, Universal Auth & ID

A




UCAN
Fission Use Case - Highly Flexible & Secure




UCAN
Fission Use Case - Highly Flexible & Secure

- Work directly in a browser without plugins



UCAN
Fission Use Case - Highly Flexible & Secure

- Work directly in a browser without plugins

- Browser is hostile — compatible with WebCrypto non-exportable keys



UCAN
Fission Use Case - Highly Flexible & Secure

- Work directly in a browser without plugins
- Browser is hostile — compatible with WebCrypto non-exportable keys

. User controlled / user owned



UCAN
Fission Use Case - Highly Flexible & Secure

- Work directly in a browser without plugins
- Browser is hostile — compatible with WebCrypto non-exportable keys
. User controlled / user owned

- Pseudonymous, principle of least authority & least visibility



UCAN
Fission Use Case - Highly Flexible & Secure

- Work directly in a browser without plugins

- Browser is hostile — compatible with WebCrypto non-exportable keys
. User controlled / user owned

- Pseudonymous, principle of least authority & least visibility

. Won't always have access to the root” device



UCAN
Fission Use Case - Highly Flexible & Secure

- Work directly in a browser without plugins

- Browser is hostile — compatible with WebCrypto non-exportable keys
. User controlled / user owned

- Pseudonymous, principle of least authority & least visibility

. Won't always have access to the "root” device

. Must work offline



UCAN
Fission Use Case - Highly Flexible & Secure

- Work directly in a browser without plugins

- Browser is hostile — compatible with WebCrypto non-exportable keys
. User controlled / user owned

- Pseudonymous, principle of least authority & least visibility

. Won't always have access to the root” device

- Must work offline

. Extensible semantics



UCAN
Fission Use Case - Highly Flexible & Secure

- Work directly in a browser without plugins

- Browser is hostile — compatible with WebCrypto non-exportable keys
. User controlled / user owned

- Pseudonymous, principle of least authority & least visibility

. Won't always have access to the "root” device

- Must work offline

- Extensible semantics

- Flexible granularity



UCAN
Fission Use Case - Highly Flexible & Secure

- Work directly in a browser without plugins

- Browser is hostile — compatible with WebCrypto non-exportable keys
. User controlled / user owned

- Pseudonymous, principle of least authority & least visibility

. Won't always have access to the root” device

- Must work offline

- Extensible semantics

- Flexible granularity

. Revocable



UCAN

Object Capability Model (OCAP)




UCAN

Object Capability Model (OCAP)

. ACL Is ‘reactive auth”




UCAN

Object Capability Model (OCAP)

. ACL Is ‘reactive auth”




UCAN

Object Capability Model (OCAP)

. ACL Is ‘reactive auth”




UCAN

Object Capability Model (OCAP)

. ACL Is ‘reactive auth”




UCAN

Object Capability Model (OCAP)

. ACL Is ‘reactive auth”




UCAN

Object Capability Model (OCAP)

. ACL Is ‘reactive auth”




UCAN

Object Capability Model (OCAP)

. ACL Is ‘reactive auth”




UCAN

Object Capability Model (OCAP)

. ACL Is ‘reactive auth”

- OCAP is "proactive auth”
. Contains all the info about access

- Any guarding done up front (e.g. time limiting)

- Generally some reference, proof, or key

- Anything directly created (parenthood)

Delegate subset of access to another (introduction)

. Long history (e.g. X.509, SDSI, SPKI, Macaroons)




UCAN

Object Capability Model (OCAP)

. ACL Is ‘reactive auth”

- OCAP is "proactive auth”
. Contains all the info about access

- Any guarding done up front (e.g. time limiting)

- Generally some reference, proof, or key

- Anything directly created (parenthood)

Delegate subset of access to another (introduction)

. Long history (e.g. X.509, SDSI, SPKI, Macaroons)




UCAN

Object Capability Model (OCAP)

. ACL Is ‘reactive auth”

- OCAP is "proactive auth”
. Contains all the info about access

- Any guarding done up front (e.g. time limiting)

- Generally some reference, proof, or key

- Anything directly created (parenthood)

Delegate subset of access to another (introduction)

. Long history (e.g. X.509, SDSI, SPKI, Macaroons)




UCAN

Object Capability Model (OCAP)

. ACL Is ‘reactive auth”

- OCAP is "proactive auth”

- Contains all the info about access

- Any guarding done up front (e.g. time limiting)
- Generally some reference, proof, or key

- Anything directly created (parenthood)

Delegate subset of access to another (introduction)

. Long history (e.g. X.509, SDSI, SPKI, Macaroons)




UCAN

Object Capability Model (OCAP)

. ACL Is ‘reactive auth”

- OCAP is "proactive auth”

- Contains all the info about access

- Any guarding done up front (e.g. time limiting)
- Generally some reference, proof, or key

- Anything directly created (parenthood)

Delegate subset of access to another (introduction)

. Long history (e.g. X.509, SDSI, SPKI, Macaroons)




UCAN
Chained Attenuation



UCAN
Chained Attenuation

P
id




UCAN
Chained Attenuation




UCAN
Chained Attenuation




UCAN
Chained Attenuation




UCAN
Chained Attenuation




UCAN
Chained Attenuation




UCAN
Chained Attenuation




UCAN
Chained Attenuation




UCAN
Chained Attenuation




UCAN

Tradeoffs & Hybridization



UCAN

Tradeoffs & Hybridization

« Pure ACL, reactive
+ Centrally view who has access to what
+ Check on every request, bottleneck
+ At-will revocation
+ Access rules grow in complexity

+ More complex provisioning



UCAN

Tradeoffs & Hybridization

= Pure ACL, reactive » Pure OCAP, proactive
+ Centrally view who has access to what - Works offline & everywhere
+ Check on every request, bottleneck . User owned or provisioned
+ At-will revocation - No resource contention, infinite scale
. Access rules grow in complexity - Easy interop (as we'll see)
- More complex provisioning + Principle of least authority

Revocation more difficult

. Tracking possible but has tradeoffs



UCAN

OAuth Sequence

Application Authorization Server Resource Server

Grant? sl

Grant!

Token? s

Token!

= \[a|id?

Valid!

Qs RS OUTCE



UCAN

UCAN Sequence &

Application Resource Server

= Auth?

Resource? s==p

Gre R@s0Urce!




UCAN
Revocation Cascade




UCAN
Revocation Cascade

UCANCID -..... .
Ny

..'A




"EdDSA",
" JWT"
] @ i 5 i @ "

"did:key:zStEZpzSMtTt9k2vszgvCwF4fLQQSYA15W5AQ4z3AR6Bx4eFI5crIJFbuGxKmbma4™,
"did:key:z5C4fuP2DDIChhMBCwAkpYUMuJZdNWWH5NeYjUyY8btYfzDh3aHwT5p1cHroTtjq",

1611204719,
1611300000,

[

"sha256": "B94D27B9934D3E0Q8A52E52D7DA7DABFAC484EFE37A5380EE9088F/7/ACE2EFCDES ™,

n

'msg”: "hello world"

;
]

"att": |[

{

"wnfs": "boris.fission.name/public/photos/",
”Cap” : HO\/ER\NRITE”

b

"email": "borisafission.codes"”,
”Cap)”: IISENDH
1,

DR
"eyJhbGc101JSUzZIIN1ISINR5cCI6IkpXVCISINVhd1iI6I JAUMS4wWInG.eyJhdwWQi101JkawQ6a2VvV50npTd

]

}
8XfAytazS82wHcjoTyoghMyxX1WdR7Nn7A29DNSTOE1XLdwI6xCO6AfgZWF1b0sS_TuYI30G85Am1EXREKrS6tD




UCAN

Auth Chaining

. OCAP, provable chains, revocable

. Non-exportable 2048-bit RSA (WebCrypto), Ed25519 & BLS everywhere else

root
Delegate 3

Delegate 2




UCAN
Trustiess Interop

8:'s OIDC token?

2.'s OIDC token!

-

OIDC Server Service A Service B

J Check & HMAC and @ signature

") Update @ subscription for &

204 Accepted

UCAN with & ID / email
Describes offer for &

OIDC Login

OIDC Token

Offer for e+ 8¢
Secured with signature &
and HMAC 28




High Level Auth Topologies

OCAPFileCoin & Accounts
/.

pe




OCAP FileCoin & Accounts

Fully Managed (Similar to Today)



OCAP FileCoin & Accounts

Fully Managed (Similar to Today)

i
i
i
i
i
g



OCAP FileCoin & Accounts

Fully Managed (Similar to Today)

i
i
i
i
i
%



OCAP FileCoin & Accounts

Fully Managed (Similar to Today)

i
i
i
i
i
%



OCAP FileCoin & Accounts

Fully Managed (Similar to Today)

i
i
i
i
i
%



OCAP FileCoin & Accounts

Fully Managed (Similar to Today)

I 1

-

[ LLIIITIIII_"§

|

SasEEE———...
—_— )

P
LA

® 6 6
£

i
i
i
i
i
%



OCAP FileCoin & Accounts

Fully Managed (Similar to Today)

i
i
i
i
i
g



OCAP FileCoin & Accounts

Fully Managed (Similar to Today)

i
i
i
i
i
%



OCAP FileCoin & Accounts

Fully Managed (Similar to Today)

i
i
i
i
i
%



OCAP FileCoin & Accounts

Fully Managed (Similar to Today)

EEEEEEE




OCAP FileCoin & Accounts
BLS Cosigner (Self Sovereign)

2/3 PK for 3?

EEEEEEE



OCAP FileCoin & Accounts
Delegate-Aware Blockchain

t

UCAN2 TX

i
i
i
i
%



OCAP FileCoin & Accounts
Bonus: Payment Channel Interop



OCAP FileCoin & Accounts
Bonus: Payment Channel Interop




OCAP FileCoin & Accounts
Bonus: Payment Channel Interop




OCAP FileCoin & Accounts
Bonus: Payment Channel Interop

sendTx( &, 1008, UCAN{
max: 2008,
from: #,
to: A
sig: %

1)




OCAP FileCoin & Accounts
Bonus: Payment Channel Interop

sendTx( &, 1008, UCAN{
max: 2008,
from: #,
to: A
sig: 4

1)

Countersigned Tx!
Countersigned Tx!




h &
d'
C n

Read vs Write

oo /




Securing Data Access

WNFS Layout




Securing Data Access

WNFS Layout

alice.fission.name



Securing Data Access

WNFS Layout

alice.fission.name

Public

Photos

Avatars




Securing Data Access

WNFS Layout

alice.fission.name

Public Private

Photos Photos

Avatars Family Photos \V\VAer:1|[-1aY;




Securing Data Access

WNFS LayOUt alice.fission.name

Public

Private Shared By Me

Photos Photos Keys and

Pointers

Avatars

Family Photos My Gallery




Securing Data Access

WNFS LayOUt alice.fission.name

Public Private Shared By Me Shared w/ Me

Photos Photos Keys and Keys and

Pointers Pointers

Avatars Family Photos \V\VAer:1|[-1aY;




Securing Data Access

Virtual Nodes



Securing Data Access

Virtual Nodes




Securing Data Access

Virtual Nodes

Raw Data Metadata




Securing Data Access

Virtual Nodes

Raw Data Metadata Metadata




Securing Data Access

Virtual Nodes

File Node Directory Node

Raw Data Metadata Metadata

 Virtual Node

. Consistent interface

- Arbitrary metadata

- Tags, creators, MIME, sources, &C



Securing Data Access

Hard & Soft Links




Securing Data Access

Hard & Soft Links

. Hard links

. New for the web!
. Directreference

+ 2 pointers ~ duplicate



Securing Data Access

Hard & Soft Links

. Hard links

- New for the web!
- Direct reference
+ 2 pointers ~ duplicate
- Soft links
- Like a symlink or web link
+ 2 pointers ~ latest
- May break

- Always some version available



Securing Data Access

Hard & Soft Links

. Hard links

- New for the web!
- Direct reference
+ 2 pointers ~ duplicate
- Soft links
- Like a symlink or web link

+ 2 pointers ~ |atest

- May break

- Always some version available



Securing Data Access

Hard & Soft Links

. Hard links

- New for the web!
- Direct reference
+ 2 pointers ~ duplicate
- Soft links
- Like a symlink or web link

+ 2 pointers ~ |atest

- May break

- Always some version available



Securing Data Access

Hard & Soft Links

. Hard links

- New for the web!
- Direct reference
+ 2 pointers ~ duplicate
- Soft links
- Like a symlink or web link

+ 2 pointers ~ |atest

- May break

- Always some version available



Securing Data Access

Hard & Soft Links

. Hard links

- New for the web!
- Direct reference
+ 2 pointers ~ duplicate
- Soft links
- Like a symlink or web link

+ 2 pointers ~ |atest

- May break

- Always some version available



Securing Data Access

Persistent Versioning



Securing Data Access

Persistent Versioning

Photos@rO

Vacation Avatars@rO

beach.png caricature.jpg

Revision O



Securing Data Access

Persistent Versioning

Photos@rO

Vacation Avatars@rO

beach.png caricature.jpg

Revision O




Securing Data Access

Persistent Versioning

Photos@rO Photos@r1

D

Vacation Avatars@rO Avatars@r1

beach.png caricature.jpg headshot.png

Revision 0 Revision 1




Securing Data Access

Persistent Versioning

Photos@rO Photos@r1

D

Vacation Avatars@ri

beach.png caricature.jpg

Revision 0 Revision 1




Securing Data Access

Persistent Versioning

Photos@rO

D

Photos@r1

Vacation Avatars@rO K InsertNew Avatars@r1

beach.png caricature.jpg headshot.png

Revision 0 Revision 1



Securing Data Access

- - - Generation O -—-
Persistent Versioning

Photos@rO

D

Photos@r1

Vacation Avatars@rO K InsertNew Avatars@r1

beach.png caricature.jpg headshot.png

Revision 0 Revision 1



Securing Data Access

Persistent Versioning

Generation 0

Generation 1

-G

Photos@rO

D

Photos@r1

Vacation Avatars@rO K InsertNew Avatars@r1

beach.png caricature.jpg headshot.png

Revision 0 Revision 1



Securing Data Access

Rearranged

Photos@r1

Photos@r0 Avatars@r

Vacation Avatars@rO

beach.png

caricature.jpg headshot.png




Securing Data Access

Private Nodes

CBOR

Binary

~
Encrypted Node & + /Q E—

Virtual Node

Metadata




Securing Data Access

Cryptree &

Virtual Node Virtual Node

Metadata Metadata

|
8 - \d
: - “
& IS oL [ L
/ Y /l / .
N u L
N u .




Securing Data Access

Cryptree &

Virtual Node Virtual Node

Metadata Metadata

name: “beach.jpg”,
revision: 42,
key: “B374A26A71490437A..."




Securing Data Access

Cryptree &

Virtual Node

Virtual Node

Metadata Metadata

name: “beach.jpg”,
revision: 42,
key: “B374A26A71490437A..."




Securing Data Access

Cryptree &

Virtual Node

Virtual Node

Metadata Metadata

name: “beach.jpg”,
revision: 42,
key: “B374A26A71490437A..."




Securing Data Access

Subtree Read Access

root




Securing Data Access

Future Light Cone Restriction



Securing Data Access

Future Light Cone Restriction

. Ratchet keys for backwards secrecy

+ Spiral ratchet for quick fast forwards



Securing Data Access

Future Light Cone Restriction

+ Ratchet keys for backwards secrecy

+ Spiral ratchet for quick fast forwards

3|7—36—35—34—33—32—3|1
38 1/—16—15—14—13 30

| o
39 18 5—4—3 12 29

o L
40 19 6 1—2 11 28

] |
41 20 7—8—9—10 27

| |
4|2 21—22—23—24-25-26
43—44—45—-46—47—48-49...



Securing Data Access

Future Light Cone Restriction

- Ratchet keys for backwards secrecy

- Spiral ratchet for quick fast forwards

3|7—36—35—34—33—32—3‘1
38 1/—16—15—14—13 30

| o
39 18 5—4—3 12 29

o L
40 19 6 1—2 11 28

L |
41 20 7—8—9—10 27

] |
42 21-22-23-24-25-26
43—44—45—46-47—-48—49... OBSERVER -




Securing Data Access

Encrypted Tree Is Surprisingly Efficient

¢ 4 S
¢,




Securing Data Access

Encrypted Tree Is Surprisingly Efficient

HAMT
(weight 16)

¢ 4 S
¢,




Securing Data Access

Encrypted Tree Is Surprisingly Efficient

HAMT 163 =4,096 items
(weight 16) 164 = 65,536 items

¢ 4 S
¢,




Securing Data Access

Encrypted Tree Is Surprisingly Efficient

HAMT 163 =4,096 items
(weight 16) 164 = 65,536 items

¢ 4 S
¢,

Append-only
Quick Read/Write

Merkleized
Concurrenc y Friendly




Securing Data Access

Encrypted Tree Is Surprisingly Efficient

HAMT 163 =4,096 items
(weight 16) 164 = 65,536 items

Append-only

.
®
.
SRS
.
.
®
.
®
Quick Read/Write
.
= PR ACY )
Merkleized
..........l............................“.........--......“.‘...............‘“.‘............
o** “““‘
= . s®
I n IR e . «** en®
rrenc . . .
* ws® . ws®
. at® L'y at®
SR .t . . .
* se® * 22 Lmmmun®
. s® . fopunn
e® et . pafin
. . s %
“‘ en®® “l""“
* ws® T LA A
** po®  Lsmmus . gn®
. famun® e® _uv
. tY g . .
IR A b “‘“‘
Y "‘
.
%
L
" 3
........... .....*-*.‘.:.........................------........................
® *
au® o
.
®




Securing Data Access

Namefilters & Hidden Paths




Securing Data Access

Namefilters & Hidden Paths

. Bare Filter

® parentFilter
¢ AND bloom(SHA(aesKey))

® AND bloom(SHA(aesKey ++ revisionRatchet))

. Saturation

® nameFilter AND bloom(SHA(nameFilter))

+ Repeat until threshold bits flipped



Securing Data Access

Access-Mediated Collaborative Rooting




Securing Data Access

Access-Mediated Collaborative Rooting

¢ 4 S
Illlllilllilll\illllll
’ .

lllllil llilll'
"
Illllil lilllll

Rev 0




Securing Data Access

Access-Mediated Collaborative Rooting

@
4




Securing Data Access

Access-Mediated Collaborative Rooting

— -
4

Rev 1
(Partial)



Securing Data Access

Access-Mediated Collaborative Rooting

— -
4

Rev 1
(Partial)



Securing Data Access

Access-Mediated Collaborative Rooting

@
4




Securing Data Access

Access-Mediated Collaborative Rooting

Rooting progress

No common root at this layer!
Attached via HAMT



Securing Data Access

Progressive Fast Forward




Securing Data Access

Progressive Fast Forward




Securing Data Access

Progressive Fast Forward




Securing Data Access

Progressive Fast Forward




Securing Data Access

Progressive Fast Forward




Securing Data Access

Merkile CRDT

Single File Version Shadow



Securing Data Access

Merkile CRDT

+ Original paper from

D y

- Persistent data structure by default @ .

. Confluent with automated reconciliation

. |nnate causal clock via Merkle DAG .

. Coarse grained (path-level)

Single File Version Shadow



Securing Data Access

Async Granting Read & Wrrite



Securing Data Access

Async Granting Read & Write




Securing Data Access

Async Granting Read & Write Shared by e

did:key:zStEksDrxkwYmpzgB
dAQjjx1IPRbHG3fg4ChGeJcYU
YU44a4CBUEXTTjeCbop6Uur




Securing Data Access

Async Granting Read & Write Shared by e

did:key:zStEksDrxkwYmpzgB
dAQjjx1IPRbHG3fg4ChGeJcYU
YU44a4CBUEXTTjeCbop6Uur

Human Readable Name



Securing Data Access

Async Granting Read & Write Shared by e

did:key:zStEksDrxkwYmpzgB
dAQjjx1IPRbHG3fg4ChGeJcYU
YU44a4CBUEXTTjeCbop6Uur

Human Readable Name




Securing Data Access

Async Granting Read & Write Shared by e

did:key:zStEksDrxkwYmpzgB
dAQjjx1IPRbHG3fg4ChGeJcYU
YU44a4CBUEXTTjeCbop6Uur

Human Readable Name




Securing Data Access

Async Granting Read & Write Shared by e

did:key:zStEksDrxkwYmpzgB
Shared with Me dAQjjx1PRbHG3fq4ChGeJcYU
YU44a4CBUEXTTjeCbop6Uur

Human Readable Name



