UCAN & WNFS

@ What, Why, and Integration &




Decentralized Digital Identity

DIDS




Decentralized Digital Identity

DIDs

EXAMPLE 2: Minimal self-managed DID Document

{
"@context": "https://w3id.org/did/v1l",
"id": "did:example:123456789%9abcdefghi”,
"publicKey": [{
"id": "did:example:123456789abcdefghi#keys-1",
"type": "RsaVerificationKey2018",
"owner": "did:example:123456789abcdefghi”,
"publicKeyPem": "
H,
"authentication": [{
// this key can be used to authenticate as DID ...9938
"type": "RsaSignatureAuthentication2018",
"publicKey": "did:example:123456789abcdefghi#keys-1"
H,
"service": [{
"type": "ExampleService",
"serviceEndpoint": "https://example.com/endpoint/8377464"

}H




Decentralized Digital Identity

DIDs

. One or more public keys

EXAMPLE 2: Minimal self-managed DID Document

{
DS "@context": "httpS ://w31id.o rg/did/V]-" ’
"id": "did:example:123456789abcdefghi",
"publicKey": [{
| AgnOStIC about baCklﬂg "id": "did:example:123456789abcdefghi#keys-1",
"type": "RsaVerificationKey2018",
"owner": "did:example:123456789%9abcdefghi",

+ Truly "universal” user |

. Se‘f‘atteSting "publicKeyPem": "
H,
"authentication": [{
Database // this key can be used to authenticate as DID ...9938
"type": "RsaSignatureAuthentication2018",
3 ‘ 0OC kC ha | N . "publicKey": "did:example:123456789%abcdefghi#keys—1"
| "service": [{
For users, devices, and more "type": "ExampleService",

"serviceEndpoint": "https://example.com/endpoint/8377464"
+]

Relates to verifiable credentials
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Decentralized Digital Identity

did :key & UCAN

. "Just” a public key (e.g. RSA, EADSA)
- Self-certifying, extremely flexible
. Well suited to capabilities/authZ (vs identity/authN)
- Made practical with UCANs
. did:key > authN

. UCAN = authZ
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Decentralized Digital Identity

Variety

. Microsoft ION, 3Box’s Ceramic, Sovrin, did:key, and well over 400 others
. Can federate, but hasn't been done yet win the wild

- Fission working towards interop with ION as first step



User Controlled, Local-First, Universal Auth & ID

A
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UCAN
Fission Use Case - Highly Flexible & Secure

- Work directly in a browser without plugins

- Browser is hostile — compatible with WebCrypto non-exportable keys
. User controlled / user owned

- Pseudonymous, principle of least authority & least visibility

. Won't always have access to the root” device

- Must work offline

- Extensible semantics

- Flexible granularity

. Revocable
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- OCAP is "proactive auth”
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- Any guarding done up front (e.g. time limiting)

- Generally some reference, proof, or key

- Anything directly created (parenthood)
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Object Capability Model (OCAP)

. ACL Is ‘reactive auth”

- OCAP is "proactive auth”

- Contains all the info about access

- Any guarding done up front (e.g. time limiting)
- Generally some reference, proof, or key

- Anything directly created (parenthood)

Delegate subset of access to another (introduction)

. Long history (e.g. X.509, SDSI, SPKI, Macaroons)




UCAN
Chained Attenuation



UCAN
Chained Attenuation

P
id




UCAN
Chained Attenuation




UCAN
Chained Attenuation




UCAN
Chained Attenuation




UCAN
Chained Attenuation




UCAN
Chained Attenuation




UCAN
Chained Attenuation




UCAN
Chained Attenuation




UCAN
Chained Attenuation




UCAN

Tradeoffs & Hybridization



UCAN

Tradeoffs & Hybridization

« Pure ACL, reactive
+ Centrally view who has access to what
+ Check on every request, bottleneck
+ At-will revocation
+ Access rules grow in complexity

+ More complex provisioning



UCAN

Tradeoffs & Hybridization

= Pure ACL, reactive » Pure OCAP, proactive
+ Centrally view who has access to what - Works offline & everywhere
+ Check on every request, bottleneck . User owned or provisioned
+ At-will revocation - No resource contention, infinite scale
. Access rules grow in complexity - Easy interop (as we'll see)
- More complex provisioning + Principle of least authority

Revocation more difficult

. Tracking possible but has tradeoffs



UCAN

OAuth Sequence

Application Authorization Server Resource Server

Grant? sl

Grant!

Token? s

Token!

= \[a|id?

Valid!

Qs RS OUTCE



UCAN

UCAN Sequence &

Application Resource Server

= Auth?

Resource? s==p

Gre R@s0Urce!
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UCAN
Revocation Cascade

UCANCID -..... .
Ny

..'A




"EdDSA",
" JWT"
] @ i 5 i @ "

"did:key:zStEZpzSMtTt9k2vszgvCwF4fLQQSYA15W5AQ4z3AR6Bx4eFI5crIJFbuGxKmbma4™,
"did:key:z5C4fuP2DDIChhMBCwAkpYUMuJZdNWWH5NeYjUyY8btYfzDh3aHwT5p1cHroTtjq",

1611204719,
1611300000,

[

"sha256": "B94D27B9934D3E0Q8A52E52D7DA7DABFAC484EFE37A5380EE9088F/7/ACE2EFCDES ™,

n

'msg”: "hello world"

;
]

"att": |[

{

"wnfs": "boris.fission.name/public/photos/",
”Cap” : HO\/ER\NRITE”

b

"email": "borisafission.codes"”,
”Cap)”: IISENDH
1,

DR
"eyJhbGc101JSUzZIIN1ISINR5cCI6IkpXVCISINVhd1iI6I JAUMS4wWInG.eyJhdwWQi101JkawQ6a2VvV50npTd

]

}
8XfAytazS82wHcjoTyoghMyxX1WdR7Nn7A29DNSTOE1XLdwI6xCO6AfgZWF1b0sS_TuYI30G85Am1EXREKrS6tD




UCAN

Auth Chaining

. OCAP, provable chains, revocable

. Non-exportable 2048-bit RSA (WebCrypto), Ed25519 & BLS everywhere else

root
Delegate 3

Delegate 2




UCAN
Trustiess Interop

8:'s OIDC token?

2.'s OIDC token!

-

OIDC Server Service A Service B

J Check & HMAC and @ signature

") Update @ subscription for &

204 Accepted

UCAN with & ID / email
Describes offer for &

OIDC Login

OIDC Token

Offer for e+ 8¢
Secured with signature &
and HMAC 28




High Level Auth Topologies

OCAPFileCoin & Accounts
/.

pe
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OCAP FileCoin & Accounts

Fully Managed (Similar to Today)

EEEEEEE




OCAP FileCoin & Accounts
BLS Cosigner (Self Sovereign)

2/3 PK for 3?

EEEEEEE



OCAP FileCoin & Accounts
Delegate-Aware Blockchain

t

UCAN2 TX
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OCAP FileCoin & Accounts
Bonus: Payment Channel Interop

sendTx( &, 1008, UCAN{
max: 2008,
from: #,
to: A
sig: 4

1)

Countersigned Tx!
Countersigned Tx!
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WNFS Layout

alice.fission.name

Public Private
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Securing Data Access

WNFS LayOUt alice.fission.name

Public Private Shared By Me Shared w/ Me

Photos Photos Keys and Keys and

Pointers Pointers

Avatars Family Photos \V\VAer:1|[-1aY;
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Securing Data Access

Virtual Nodes

File Node Directory Node

Raw Data Metadata Metadata

 Virtual Node

. Consistent interface

- Arbitrary metadata

- Tags, creators, MIME, sources, &C
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Hard & Soft Links

. Hard links

- New for the web!
- Direct reference
+ 2 pointers ~ duplicate
- Soft links
- Like a symlink or web link

+ 2 pointers ~ |atest

- May break

- Always some version available
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Persistent Versioning
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Securing Data Access

Persistent Versioning

Generation 0

Generation 1

-G

Photos@rO

D

Photos@r1

Vacation Avatars@rO K InsertNew Avatars@r1

beach.png caricature.jpg headshot.png

Revision 0 Revision 1



Securing Data Access

Rearranged

Photos@r1

Photos@r0 Avatars@r

Vacation Avatars@rO

beach.png

caricature.jpg headshot.png
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Binary
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Encrypted Node & + /Q E—

Virtual Node
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Securing Data Access

Cryptree &

Virtual Node Virtual Node

Metadata Metadata
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Securing Data Access

Cryptree &

Virtual Node Virtual Node

Metadata Metadata

name: “beach.jpg”,
revision: 42,
key: “B374A26A71490437A..."
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Securing Data Access

Cryptree &

Virtual Node

Virtual Node

Metadata Metadata

name: “beach.jpg”,
revision: 42,
key: “B374A26A71490437A..."




Securing Data Access

Subtree Read Access

root
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Securing Data Access

Future Light Cone Restriction

- Ratchet keys for backwards secrecy

- Spiral ratchet for quick fast forwards

3|7—36—35—34—33—32—3‘1
38 1/—16—15—14—13 30

| o
39 18 5—4—3 12 29

o L
40 19 6 1—2 11 28

L |
41 20 7—8—9—10 27

] |
42 21-22-23-24-25-26
43—44—45—46-47—-48—49... OBSERVER -
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Encrypted Tree Is Surprisingly Efficient

HAMT 163 =4,096 items
(weight 16) 164 = 65,536 items

Append-only
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Securing Data Access

Namefilters & Hidden Paths

. Bare Filter

® parentFilter
¢ AND bloom(SHA(aesKey))

® AND bloom(SHA(aesKey ++ revisionRatchet))

. Saturation

® nameFilter AND bloom(SHA(nameFilter))

+ Repeat until threshold bits flipped
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Access-Mediated Collaborative Rooting
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Securing Data Access

Access-Mediated Collaborative Rooting

Rooting progress

No common root at this layer!
Attached via HAMT
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Securing Data Access

Merkile CRDT

+ Original paper from

D y

- Persistent data structure by default @ .

. Confluent with automated reconciliation

. |nnate causal clock via Merkle DAG .

. Coarse grained (path-level)

Single File Version Shadow
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Securing Data Access

Async Granting Read & Write Shared by e

did:key:zStEksDrxkwYmpzgB
Shared with Me dAQjjx1PRbHG3fq4ChGeJcYU
YU44a4CBUEXTTjeCbop6Uur

Human Readable Name



