
Living On the Edge
🌐⚡A Brave New (Post-Cloud) World 🛰✨

~ IBM (paraphrasing a Gartner study)

[…] by 2025, 75% of data will be processed
outside the traditional data centre or cloud

Brooklyn Zelenka
@expede

Brooklyn Zelenka
@expede

• CTO at Fission

• https://fission.codes

• Infra & browser SDK for edge apps

• PLT, distributed systems

• Specs: DIF, ETH Core

• Meetups: Vancouver FP, Code & Coffee YVR

• Libs: Witchcraft, Exceptional, Rescue, &c

https://fission.codes

Meta 🔮
WebNative 🚀

• R&D from Fission & others

• Future looking / an emerging area

• Interesting tech, very exciting

• …but not all problems solved today

• Some advantages to flexible tech even before the network changes

• Universal Hostless Substrate (2019)

Meta 🔮
WebNative 🚀

• R&D from Fission & others

• Future looking / an emerging area

• Interesting tech, very exciting

• …but not all problems solved today

• Some advantages to flexible tech even before the network changes

• Universal Hostless Substrate (2019)

Fission R&D @FISSIONCodes
WebNative 🚀

• Local first

• Edge only

• No servers

• Fully distributed

• Encrypted at Rest, E2EE

• User owned data

Part I: Motivation

How we got here

What changed?

Part II: On the Edge

Why BEAM

Primer

All About Data

A Few Techniques

Overview
WebNative 🚀

Motivation
Part I

🎭

90s Web
Motivation 🎭

90s Web
Motivation 🎭

💁 🖥

90s Web
Motivation 🎭

💁 🖥🐢

90s Web
Motivation 🎭

💁 🖥 🗃🐢

90s Web
Motivation 🎭

💁 🖥 🗃⚙🐢

90s Web
Motivation 🎭

💁 🖥 🗃⚙🐢
💪

90s Web
Motivation 🎭

💁 🖥 🗃⚙🐢
💪

90s Web
Motivation 🎭

💁 🖥 🗃⚙🐢
💪

90s Web
Motivation 🎭

💁 🖥 🗃⚙🐢
💪

90s Web
Motivation 🎭

💁 🖥 🗃
💁 🖥

💁 🖥
⚙🐢
💪

90s Web
Motivation 🎭

💁 🖥 🗃
💁 🖥

💁 🖥
⚙ 🔐🐢
💪

Scaling Up
Motivation 🎭

💁 🖥
💁 🖥

💁 🖥
⚙🐙
⚙

⚙
🗃

🗃

🗃

🔐

🔐

🔐

Scaling Up
Motivation 🎭

💁 🖥
💁 🖥

💁 🖥
⚙🐙
⚙

⚙
🗃

🗃

🗃

🔐

🔐

🔐

Scaling Up
Motivation 🎭

💁 🖥
💁 🖥

💁 🖥
⚙🐙
⚙

⚙
🗃

🗃

🗃

🔐

🔐

🔐

“The Cloud”

☁☁☁☁☁☁

Abstracting
Motivation 🎭

💁 🖥
💁 🖥

💁 🖥
⚙🐙
⚙

⚙
🗃

🗃

🗃

🔐

🔐

🔐

“Serverless”

λλλλλλλλλλλλλ

…and so it was for many years…

…and so it was for many years…
🦖☄🌋🌾 🚀🏰🏢

Natural Consequences 🍃
Motivation 🎭

Natural Consequences 🍃
Motivation 🎭

• Server-focus

• More stack to learn

• DevOps, Docker, k8s

Natural Consequences 🍃
Motivation 🎭

• Server-focus

• More stack to learn

• DevOps, Docker, k8s

• Single source of truth

• i.e. “the database”

Natural Consequences 🍃
Motivation 🎭

• Server-focus

• More stack to learn

• DevOps, Docker, k8s

• Single source of truth

• i.e. “the database”

• Client concerned with data sync

Natural Consequences 🍃
Motivation 🎭

• Server-focus

• More stack to learn

• DevOps, Docker, k8s

• Single source of truth

• i.e. “the database”

• Client concerned with data sync

• AWS, Azure, GCP

Natural Consequences 🍃
Motivation 🎭

• Server-focus

• More stack to learn

• DevOps, Docker, k8s

• Single source of truth

• i.e. “the database”

• Client concerned with data sync

• AWS, Azure, GCP Source: 2021 Stack Overflow Developer Survey

Sending a “Direct” Message
Motivation 🎭

Sending a “Direct” Message
Motivation 🎭

Sending a “Direct” Message
Motivation 🎭

Sending a “Direct” Message
Motivation 🎭

What Even is a “Server”? 🧐
Motivation 🎭

1. Auth gatekeeper (because multi-tenant data)

2. Resource availability

3. Out-of-band compute (e.g. batch tasks, cron, OLAP)

Network Topology 🧠
Motivation 🎭

Network Topology 🧠
Motivation 🎭

⚙

Network Topology 🧠
Motivation 🎭

Centralized

👨🎤

⚙

👩🌾 🧑🎨

Network Topology 🧠
Motivation 🎭

Centralized

👨🎤

⚙

👩🌾 🧑🎨

⚙💾 🤖 🛠

Network Topology 🧠
Motivation 🎭

Centralized

👨🎤

⚙

👩🌾 🧑🎨

🐙

⚙💾 🤖 🛠

Network Topology 🧠
Motivation 🎭

Hub (e.g. gateway or load balanced)Centralized

👨🎤

⚙

👩🌾 🧑🎨

🐙

👩🌾🧑🎨 👨🎤

⚙💾 🤖 🛠

Network Topology 🧠
Motivation 🎭

Hub (e.g. gateway or load balanced)Centralized

👨🎤

⚙

👩🌾 🧑🎨

🐙

👩🌾🧑🎨 👨🎤

⚙💾 🤖 🛠

⚙

Network Topology 🧠
Motivation 🎭

Hub (e.g. gateway or load balanced)Centralized

👨🎤

⚙

👩🌾 🧑🎨

🐙

👩🌾🧑🎨 👨🎤

⚙💾 🤖 🛠 🤖

⚙

💾

Network Topology 🧠
Motivation 🎭

Hub (e.g. gateway or load balanced)Centralized

👨🎤

⚙

👩🌾 🧑🎨

🐙

👩🌾🧑🎨 👨🎤

⚙💾 🤖 🛠 🤖

🧑🎨 👨🎤

⚙

💾

⚙

Network Topology 🧠
Motivation 🎭

Hierarchical or pipelinedHub (e.g. gateway or load balanced)Centralized

👨🎤

⚙

👩🌾 🧑🎨

🐙

👩🌾🧑🎨 👨🎤

⚙💾 🤖 🛠 🤖

🧑🎨 👨🎤

⚙

💾

⚙

👩🌾🧑🎨

Network Topology 🧠
Motivation 🎭

Hierarchical or pipelinedHub (e.g. gateway or load balanced)Centralized

👨🎤

⚙

👩🌾 🧑🎨

🐙

👩🌾🧑🎨 👨🎤

⚙💾 🤖 🛠 🤖

🧑🎨 👨🎤

⚙

💾

⚙

👩🌾🧑🎨

A New Environment
A Challenger Emerges

🛰

New Assumptions
New Environment 🛰

• Powerful client devices (e.g. M1 chips, smartphones, IoT)

• Latency is the bottleneck

• Mobile (i.e. smartphone) use only growing

• Lose connection, drop when switching towers

• Do more with the existing physical network

• Not unlike how Moore’s Law lead to more parallelism

New Biz Who Dis?
New Environment 🛰

New Biz Who Dis?
New Environment 🛰

• Paradigm shift means new opportunities

New Biz Who Dis?
New Environment 🛰

• Paradigm shift means new opportunities

• 5G networks & Starlink

• Put an edge PoP right on the base station

• Low-latency compute across the street

New Biz Who Dis?
New Environment 🛰

• Paradigm shift means new opportunities

• 5G networks & Starlink

• Put an edge PoP right on the base station

• Low-latency compute across the street

• Edge PoPs in retail stores (yes really)

• 90% of Americans live <16km from a Walmart

• Walmart has lots of floor space

• Add servers to Walmart = Walmart Edge

Low Latency
A New Environment

🐇

Latency is a Physical Barrier 🚧
Low Latency 🐇

• Speed of light / speed of causality

• <40ms = edge dominates

• 8ms is ideal

• Ultra Reliable Low Latency (URLLC)

Latency is a Physical Barrier 🚧
Low Latency 🐇

• Speed of light / speed of causality

• <40ms = edge dominates

• 8ms is ideal

• Ultra Reliable Low Latency (URLLC)

Source: Ericsson

http://cscn2017.ieee-cscn.org/files/2017/08/Janne_Peisa_Ericsson_CSCN2017.pdf

Spherical Cow Assumption 🐮
Low Latency 🐇

• No compute, straight line, in a vacuum,  
guaranteed delivery, etc

• 40ms

• São Paulo ➡ NYC, Vancouver, Stockholm

• São Paulo ❌ Sidney, Tokyo, Seoul

Credit: Keenan Crane 
http://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/

http://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/

Spherical Cow Assumption 🐮
Low Latency 🐇

• No compute, straight line, in a vacuum,  
guaranteed delivery, etc

• 40ms

• São Paulo ➡ NYC, Vancouver, Stockholm

• São Paulo ❌ Sidney, Tokyo, Seoul

Credit: Keenan Crane 
http://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/

http://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/

What 8ms Looks Like
Low Latency 🐇

What 8ms Looks Like
Low Latency 🐇

Montevideo ➡ Rio de Janeiro 
Ideal Vacuum

What 8ms Looks Like
Low Latency 🐇

Montevideo ➡ Rio de Janeiro 
Ideal Vacuum

Brasilia 🔁 Salvador 
Ideal Vacuum

What 8ms Looks Like
Low Latency 🐇

Montevideo ➡ Rio de Janeiro 
Ideal Vacuum

Brasilia 🔁 Salvador 
Ideal Vacuum

Brasilia 🔁 Barreiras 
 Ideal Fiber

Causal Islands 🏖🏝
Low Latency 🐇

Causal Islands 🏖🏝
Low Latency 🐇

Causal Islands 🏖🏝
Low Latency 🐇

Causal Islands 🏖🏝
Low Latency 🐇

Light Cone & Relativistic Ordering
Low Latency 🐇

Light Cone & Relativistic Ordering
Low Latency 🐇

Source: Duesentrieb via Wikimedia Commons

https://commons.wikimedia.org/wiki/User:Duesentrieb

High Volume
Turning Up

🌊

Unprecedented Volume 🦖
High Volume 🌊

• We have high scale NOW? Only more devices & usage in the future!

• Sensors everywhere: IoT devices, continuous health data

• Geospatial data (e.g. autonomous vehicles, XR)

Feedback Cycle
High Volume 🌊

• Remote surgery

• Extended reality

• Location transparency

• Competitive cloud gaming

• Realtime manufacturing

• Continuous ML training

Source: Google & Bungie

Source: Microsoft

Source: YouTube, South China Morning Post

https://www.youtube.com/channel/UC4SUWizzKc1tptprBkWjX2Q

~ a16z, “The End of Cloud Computing”

Sensor data explosion will kill the cloud.  
Sensors will produce massive amounts of data, but the existing

infrastructure will not be able to handle the volumes or the rates […] 
 

We are absolutely going to return to a peer-to-peer computing model
[…] not unlike the distributed computing model

We are going to move to a world of data-centric programming.

Edge Absorbs Cloud (and MEC)
High Volume 🌊

Edge Absorbs Cloud (and MEC)
High Volume 🌊

🤳

Edge Absorbs Cloud (and MEC)
High Volume 🌊

🤳 🗼
💾⚙

Edge Absorbs Cloud (and MEC)
High Volume 🌊

🏢
💾⚙

🤳 🗼
💾⚙

Edge Absorbs Cloud (and MEC)
High Volume 🌊

🛰

🏢
💾⚙

🤳 🗼
💾⚙

🛰

Edge Absorbs Cloud (and MEC)
High Volume 🌊

🛰

🏢
💾⚙

☁
💾⚙💾⚙💾⚙💾⚙💾⚙💾⚙

🤳

🛰

🗼
💾⚙

🛰

Edge Absorbs Cloud (and MEC)
High Volume 🌊

🛰

🏢
💾⚙

☁
💾⚙💾⚙💾⚙💾⚙💾⚙💾⚙

🤳

🛰

🗼
💾⚙

🛰

Local
First

Edge Absorbs Cloud (and MEC)
High Volume 🌊

🛰

🏢
💾⚙

☁
💾⚙💾⚙💾⚙💾⚙💾⚙💾⚙

🤳

🛰

🗼
💾⚙

🛰

Realtime,

Storage,

Caching,

OLTP

Local
First

Edge Absorbs Cloud (and MEC)
High Volume 🌊

🛰

🏢
💾⚙

☁
💾⚙💾⚙💾⚙💾⚙💾⚙💾⚙

🤳

🛰

🗼
💾⚙

🛰

Realtime,

Storage,

Caching,

OLTP

Relay, 
Replication,

Consistency,

Tasks

Local
First

Edge Absorbs Cloud (and MEC)
High Volume 🌊

🛰

🏢
💾⚙

☁
💾⚙💾⚙💾⚙💾⚙💾⚙💾⚙

🤳

🛰

🗼
💾⚙

🛰

Aggregation,

Batching,

Training,

OLAP

Realtime,

Storage,

Caching,

OLTP

Relay, 
Replication,

Consistency,

Tasks

Local
First

Consequence
What does this all mean?

🛸

New Assumptions, New Approach
Consequence 🛸

New Assumptions, New Approach
Consequence 🛸

• New features naturally fall out of the architecture

• Recognize that we’re increasingly connected/networked

• Local-first means network efficient (in the normal case)

• Data can run anywhere = commons networks

Tackling the Fallacies
Consequence 🛸

Tackling the Fallacies
Consequence 🛸

Latency is zero

Bandwidth is infinite

Transport cost is zero

The network is secure

There is one administrator

The network is reliable

The network is homogeneous

Topology doesn't change

We need to handle  
100% of these up front

Tackling the Fallacies
Consequence 🛸

Latency is zero

Bandwidth is infinite

Transport cost is zero

The network is secure

There is one administrator

The network is reliable

The network is homogeneous

Topology doesn't change

Tackling the Fallacies
Consequence 🛸

Latency is zero

Bandwidth is infinite

Transport cost is zero

The network is secure

There is one administrator

The network is reliable

The network is homogeneous

Topology doesn't change

Treat latency directly (speed of causality) 
Treat (order of causality / relativistic)

Apps continue to work with zero bandwidth

Only push when & what needed

Minimize network use

Assume that the pipes are broken 
Direct access control

Fine grained, delegate capabilities (OCAP)

Time, delivery, & order independence

Device agnostic

atomic unit is the edge device (same like the atomic unit
is the actor)

Giving Up Topological Control
Consequence 🛸

Giving Up Topological Control
Consequence 🛸

⚙

🚙 🗼

🖥

📱

🛰📀

📱

📱

💻

📱

Data, Data, Data 💾
Consequence 🛸

Data, Data, Data 💾
Consequence 🛸

• Only UI & data are essential

Data, Data, Data 💾
Consequence 🛸

• Only UI & data are essential

• New primitives

• Consistency (CRDTs, STM, Distributed Datalog)

• State transfer ➡ state synchronization ➡ state views

Data, Data, Data 💾
Consequence 🛸

• Only UI & data are essential

• New primitives

• Consistency (CRDTs, STM, Distributed Datalog)

• State transfer ➡ state synchronization ➡ state views

• Access control needs to be inherent

• OCAP & CBC methods (AKA cryptography)

On the Edge
Part II

🧗

Why Functional Programming
On the Edge 🧗

• Data-oriented

• Pure functions on data is just data

• Shared nothing architectures

• Immutability, easy concurrency

• Manage complexity by being declarative

• What > how

• Data > process

Why the BEAM Specifically
On the Edge 🧗

• Low conceptual distance from actor model to OCAP

• Community experience with distributed systems

• Used to building up complexity from simple parts

• We’re already using a bunch of this!

• e.g. Phoenix Presence 👉 👉 👉

~ Chris McCord, “What Makes Phoenix Presence Special”

What’s special about Phoenix’s implementation is we have a system that
applies cutting edge CS research to tackle day-to-day problems in
the applications we all write. 
 
Phoenix Presence

- has no single point of failure

- has no single source of truth

- relies entirely on the standard library with no operational dependencies

- self heals

Upside Down?
What if we turn Phoenix Live View

🔁

Phoenix LiveView
On the Edge 🧗

Phoenix LiveView
On the Edge 🧗

Users 👨🏫👩🏭🧑⚕👷

Client 🖥

WSS / REST / GraphQL ↕

Controller Logic ⚙

Data Store 🗃

DevOps 📤

Developer 👩💻

Phoenix LiveView
On the Edge 🧗

🖥

Users 👨🏫👩🏭🧑⚕👷

Client 🖥

WSS / REST / GraphQL ↕

Controller Logic ⚙

Data Store 🗃

DevOps 📤

Developer 👩💻

💾

Phoenix LiveView
On the Edge 🧗

🖥

🗃⚙Users 👨🏫👩🏭🧑⚕👷

Client 🖥

WSS / REST / GraphQL ↕

Controller Logic ⚙

Data Store 🗃

DevOps 📤

Developer 👩💻

💾

Phoenix LiveView
On the Edge 🧗

🖥

🗃⚙Users 👨🏫👩🏭🧑⚕👷

Client 🖥

WSS / REST / GraphQL ↕

Controller Logic ⚙

Data Store 🗃

DevOps 📤

Developer 👩💻

💾💾💾

💾

💾

Phoenix LiveView
On the Edge 🧗

🖥

🗃⚙Users 👨🏫👩🏭🧑⚕👷

Client 🖥

WSS / REST / GraphQL ↕

Controller Logic ⚙

Data Store 🗃

DevOps 📤

Developer 👩💻

💾💾💾

💾

💾

Phoenix LiveView
On the Edge 🧗

🖥

🗃⚙Users 👨🏫👩🏭🧑⚕👷

Client 🖥

WSS / REST / GraphQL ↕

Controller Logic ⚙

Data Store 🗃

DevOps 📤

Developer 👩💻

💾💾💾

💾

💾

Phoenix LiveView
On the Edge 🧗

🖥

🗃⚙Users 👨🏫👩🏭🧑⚕👷

Client 🖥

WSS / REST / GraphQL ↕

Controller Logic ⚙

Data Store 🗃

DevOps 📤

Developer 👩💻

💾💾💾

💾

💾

Phoenix LiveView
On the Edge 🧗

🖥

🗃⚙Users 👨🏫👩🏭🧑⚕👷

Client 🖥

WSS / REST / GraphQL ↕

Controller Logic ⚙

Data Store 🗃

DevOps 📤

Developer 👩💻

💾💾💾

💾

💾

Phoenix LiveView
On the Edge 🧗

🖥

🗃⚙Users 👨🏫👩🏭🧑⚕👷

Client 🖥

WSS / REST / GraphQL ↕

Controller Logic ⚙

Data Store 🗃

DevOps 📤

Developer 👩💻

💾💾💾

⚙

💾

💾

Phoenix LiveView
On the Edge 🧗

🖥

🗃⚙Users 👨🏫👩🏭🧑⚕👷

Client 🖥

WSS / REST / GraphQL ↕

Controller Logic ⚙

Data Store 🗃

DevOps 📤

Developer 👩💻

💾💾💾

🖥

⚙

💾 💾

💾

Phoenix LiveView
On the Edge 🧗

🖥

🗃⚙Users 👨🏫👩🏭🧑⚕👷

Client 🖥

WSS / REST / GraphQL ↕

Controller Logic ⚙

Data Store 🗃

DevOps 📤

Developer 👩💻

💾💾💾

🖥

⚙

💾 💾

💾

Upside Down
On the Edge 🧗

🖥
💾💾💾

🖥
💾💾

💾🗃⚙

Data, Data, Data
It’s all about the

📊

Rob Pike, 5 Rules of Programming

Data dominates. If you've chosen the right
data structures and organized things well, the
algorithms will almost always be self-evident.

Data structures, not algorithms,

are central to programming.

Problems!
It’s All About the Data 📊

Property Consequence

Run anywhere No process in charge of access control

Casual islands Inconsistent views of data  
(or downtime)

Unstable topology No consistent connections

Local first In accessible, no replicas

CAP ➡ PACELC 📦🦌
It’s All About the Data 📊

• If network partition (P)

• Choose between:

• Availability (A) ✅ Local-first & uptime

• Consistency (C)

CAP ➡ PACELC 📦🦌
It’s All About the Data 📊

• If network partition (P)

• Choose between:

• Availability (A) ✅ Local-first & uptime

• Consistency (C)

CAP ➡ PACELC 📦🦌
It’s All About the Data 📊

C

A

• If network partition (P)

• Choose between:

• Availability (A) ✅ Local-first & uptime

• Consistency (C)

CAP ➡ PACELC 📦🦌
It’s All About the Data 📊

C

A

P

• If network partition (P)

• Choose between:

• Availability (A) ✅ Local-first & uptime

• Consistency (C)

• Else (E) when running normally:

• Choose between:

• Latency (L) ✅

• Consistency (C)

CAP ➡ PACELC 📦🦌
It’s All About the Data 📊

C

A

P

• If network partition (P)

• Choose between:

• Availability (A) ✅ Local-first & uptime

• Consistency (C)

• Else (E) when running normally:

• Choose between:

• Latency (L) ✅

• Consistency (C)

CAP ➡ PACELC 📦🦌
It’s All About the Data 📊

C

A L

EP

• If network partition (P)

• Choose between:

• Availability (A) ✅ Local-first & uptime

• Consistency (C)

• Else (E) when running normally:

• Choose between:

• Latency (L) ✅

• Consistency (C)

CAP ➡ PACELC 📦🦌
It’s All About the Data 📊

C

A L

EP

• If network partition (P)

• Choose between:

• Availability (A) ✅ Local-first & uptime

• Consistency (C)

• Else (E) when running normally:

• Choose between:

• Latency (L) ✅

• Consistency (C)

CAP ➡ PACELC 📦🦌
It’s All About the Data 📊

C

A L

EP

PA/EL

Mutable Content
It’s All About the Data 📊

• Predominantly single-source (per file) server/client

• %{node_id => %{path => content}}

• DNS maps names to IP addresses

• PIDs associate processes with numbers

• e.g. send(:example@42.123.45.6, :ping)

• Focused on the physical network

• Referential opacity

• Calling same PID often will return different data

mailto:me@10.0.1.2

Mutable Content
It’s All About the Data 📊

• Predominantly single-source (per file) server/client

• %{node_id => %{path => content}}

• DNS maps names to IP addresses

• PIDs associate processes with numbers

• e.g. send(:example@42.123.45.6, :ping)

• Focused on the physical network

• Referential opacity

• Calling same PID often will return different data

P H Y S I C A L L O C AT I O N

V I R T U A L A D D R E S S

mailto:me@10.0.1.2

Consistent Keys
It’s All About the Data 📊

• A layer of abstraction above location

• %{hash(content) => content}

• Hash AKA “content identifier” or CID

• Special “universal” relationship to content

• Focused on the data

• Stored anywhere, same ID

• Efficient caching

• Immutable data++

• Not just consistent pointers; consistent data

P H Y S I C A L L O C AT I O N

V I R T U A L A D D R E S S

Consistent Keys
It’s All About the Data 📊

• A layer of abstraction above location

• %{hash(content) => content}

• Hash AKA “content identifier” or CID

• Special “universal” relationship to content

• Focused on the data

• Stored anywhere, same ID

• Efficient caching

• Immutable data++

• Not just consistent pointers; consistent data

P H Y S I C A L L O C AT I O N

V I R T U A L A D D R E S S

C O N T E N T I D

It’s All About the Data 📊

Hash-Based Relationships

It’s All About the Data 📊

Hash-Based Relationships

{ 
 Qm123456…: { 
 data: nil, 
 links: [ 
 {name: “company”, hash: Qmabcdef…} 
 {name: “license”, hash: Qmzyxwvu…} 
] 
 } 
}

(CID ~ Data PID)

It’s All About the Data 📊

Hash-Based Relationships

{ 
 Qm123456…: { 
 data: nil, 
 links: [ 
 {name: “company”, hash: Qmabcdef…} 
 {name: “license”, hash: Qmzyxwvu…} 
] 
 } 
}

{ 
 Qmabcdef…: { 
 data: “Fission”, 
 links: [ 
 {name: “city”, hash: Qm1gb5sn…}, 
 {name: “about”, hash: Qmzyxwvu…} 
] 
 } 
}

(CID ~ Data PID)

It’s All About the Data 📊

Hash-Based Relationships

{ 
 Qm123456…: { 
 data: nil, 
 links: [ 
 {name: “company”, hash: Qmabcdef…} 
 {name: “license”, hash: Qmzyxwvu…} 
] 
 } 
}

{ 
 Qmabcdef…: { 
 data: “Fission”, 
 links: [ 
 {name: “city”, hash: Qm1gb5sn…}, 
 {name: “about”, hash: Qmzyxwvu…} 
] 
 } 
}

Qm123456…/company/about/ceo 
=> “Boris Mann”

(CID ~ Data PID)

It’s All About the Data 📊

Content IDs Are Easy
[no network version]

Partial Dependencies
It’s All About the Data 📊

Partial Dependencies
It’s All About the Data 📊

t

Partial Dependencies
It’s All About the Data 📊

t

Partial Dependencies
It’s All About the Data 📊

t

Partial Dependencies
It’s All About the Data 📊

t

Partial Dependencies
It’s All About the Data 📊

t

It’s All About the Data 📊

This all works…

Associative
It’s All About the Data 📊

Out of Order Delivery
It’s All About the Data 📊

📧

💌 📧

✉ ⚙ 💌

💌

Out of Order Delivery
It’s All About the Data 📊

📧

💌 📧

✉ ⚙ 💌

💌

Commutative Monoid (AKA Minimal CRDT)
It’s All About the Data 📊

Commutative Monoid (AKA Minimal CRDT)
It’s All About the Data 📊

Sibling / Concurrent

PNCounter
It’s All About the Data 📊

PNCounter
It’s All About the Data 📊

PNCounter
It’s All About the Data 📊

PNCounter
It’s All About the Data 📊

PNCounter
It’s All About the Data 📊

Decentralized Systems
The Age of

🌈

Decentralized Systems 🌈

Adapted from http://www.perfdynamics.com/Manifesto/USLscalability.html

Scale Curve

http://www.perfdynamics.com/Manifesto/USLscalability.html

Decentralized Systems 🌈

Adapted from http://www.perfdynamics.com/Manifesto/USLscalability.html

Scale Curve
Linear Ideal

http://www.perfdynamics.com/Manifesto/USLscalability.html

Decentralized Systems 🌈

Adapted from http://www.perfdynamics.com/Manifesto/USLscalability.html

Amdahl’s Law

Scale Curve
Linear Ideal

http://www.perfdynamics.com/Manifesto/USLscalability.html

Decentralized Systems 🌈

Adapted from http://www.perfdynamics.com/Manifesto/USLscalability.html

Amdahl’s Law

Universal Scaling LawData Contention

Scale Curve
Linear Ideal

http://www.perfdynamics.com/Manifesto/USLscalability.html

Decentralized Systems 🌈

Adapted from http://www.perfdynamics.com/Manifesto/USLscalability.html

Amdahl’s Law

Universal Scaling LawData Contention

Scale Curve
Linear Ideal

Shared Adaptive Memoization 
(“Theoretical)

🤯

http://www.perfdynamics.com/Manifesto/USLscalability.html

Decentralized Systems 🌈

Conflict Free Effects 🕊🧱
Side Effect Stream

Pure Effect Stream

Pure Function Stream

Base Event Stream

Decentralized Systems 🌈

Conflict Free Effects 🕊🧱
Side Effect Stream

Pure Effect Stream

Pure Function Stream

Base Event Stream

t

Decentralized Systems 🌈

GenEffect 🚀

Different Clients ~ Schema Drift
Decentralized Systems 🌈

Source: Project Cambria, Ink & Switch 
https://www.inkandswitch.com/cambria.html

Fixing the Leaky Pipes
Secure Decentralized Data Access

🚿

Fixing the Leaky Pipes 🚿

Object Capability Model (OCAP)

• ACL is “reactive auth” / OCAP is “proactive auth”

Fixing the Leaky Pipes 🚿

Object Capability Model (OCAP)

• ACL is “reactive auth” / OCAP is “proactive auth”

• OCAP contains all the info about access

Fixing the Leaky Pipes 🚿

Object Capability Model (OCAP)

• ACL is “reactive auth” / OCAP is “proactive auth”

• OCAP contains all the info about access

• Generally some reference, proof, or key

• …not unlike having a PID

• Rights to anything directly created (parenthood)

• The right to delegate subset of access to another (introduction)

Fixing the Leaky Pipes 🚿

Object Capability Model (OCAP)

• ACL is “reactive auth” / OCAP is “proactive auth”

• OCAP contains all the info about access

• Generally some reference, proof, or key

• …not unlike having a PID

• Rights to anything directly created (parenthood)

• The right to delegate subset of access to another (introduction)

• Long history (e.g. X.509, SDSI, SPKI, Macaroons)

Fixing the Leaky Pipes 🚿

Object Capability Model (OCAP)

3rd-Party Subdelegation & Attenuation
Fixing the Leaky Pipes 🚿

3rd-Party Subdelegation & Attenuation

🖥

Fixing the Leaky Pipes 🚿

3rd-Party Subdelegation & Attenuation

🖥 ⚙

Fixing the Leaky Pipes 🚿

3rd-Party Subdelegation & Attenuation

🖥 ⚙🔟

Fixing the Leaky Pipes 🚿

3rd-Party Subdelegation & Attenuation

🖥 🛠⚙🔟

Fixing the Leaky Pipes 🚿

3rd-Party Subdelegation & Attenuation

🖥 🛠⚙🔟 2⃣

Fixing the Leaky Pipes 🚿

Direct Access Control
Fixing the Leaky Pipes 🚿

•Advantages

•Proactive

•Works offline

•Attenuation

•Easy to understand rules

•User control (GDPR, CCPA)

•Interoperable

•Challenges

•Proactive

•Revocation

•Give up (more) access stats

Fixing the Leaky Pipes 🚿
Hierarchal Read Access

Virtual Node

Index Metadata

🔑 Encrypted Node 🔒 + =

JSON

Binary AES256

🔑 🔑 🔑

Fixing the Leaky Pipes 🚿
Cryptree 🎄

Fixing the Leaky Pipes 🚿
Cryptree Sketch ✍

Fixing the Leaky Pipes 🚿
Cryptree Sketch ✍

Local stateful, remote stateless

Universal Auth & ID
How to Do Offline & Distributed Auth

🗝

Universal Auth & ID 🗝

Universal IDs

• W3C, DIF, Microsoft

Universal Auth & ID 🗝

Universal IDs

• W3C, DIF, Microsoft

• Based on public-key cryptography

Universal Auth & ID 🗝

Universal IDs

• W3C, DIF, Microsoft

• Based on public-key cryptography

• Truly “universal” user IDs

Universal Auth & ID 🗝

Universal IDs

• W3C, DIF, Microsoft

• Based on public-key cryptography

• Truly “universal” user IDs

• Agnostic about backing

Universal Auth & ID 🗝

Universal IDs

• W3C, DIF, Microsoft

• Based on public-key cryptography

• Truly “universal” user IDs

• Agnostic about backing

• For users, devices, and more

Universal Auth & ID 🗝

Universal IDs

Universal Auth & ID 🗝
JWT Encoded

Universal Auth & ID 🗝
JWT Encoded

Universal Auth & ID 🗝
JWT Encoded

Universal Auth & ID 🗝

Auth Chaining

Universal Auth & ID 🗝
OAuth vs UCAN Sequence

Universal Auth & ID 🗝
OAuth vs UCAN Sequence

Universal Auth & ID 🗝
OAuth vs UCAN Sequence

(Verifiable & user originated)

Universal Auth & ID 🗝

Universal Auth & ID 🗝

💁🤖 👽
Service BService A User

🛂
External OIDC Server

Universal Auth & ID 🗝

💁🤖 👽
Service BService A User

UCAN with 💁 ID / email

Describes offer for 🤖

🛂
External OIDC Server

Universal Auth & ID 🗝

💁🤖 👽
Service BService A User

UCAN with 💁 ID / email

Describes offer for 🤖

🛂
External OIDC Server

OIDC Login

Universal Auth & ID 🗝

💁🤖 👽
Service BService A User

UCAN with 💁 ID / email

Describes offer for 🤖

🛂
External OIDC Server

OIDC Login

OIDC Token

Universal Auth & ID 🗝

💁🤖 👽
Service BService A User

UCAN with 💁 ID / email

Describes offer for 🤖

🛂
External OIDC Server

OIDC Login

OIDC Token

Offer for 🤖+💁 
Secured with signature 👽 

and HMAC 💁🛂

Universal Auth & ID 🗝

💁🤖 👽
Service BService A User

UCAN with 💁 ID / email

Describes offer for 🤖

🛂
External OIDC Server

OIDC Login

OIDC Token

Offer for 🤖+💁 
Secured with signature 👽 

and HMAC 💁🛂

💁’s OIDC token?

Universal Auth & ID 🗝

💁🤖 👽
Service BService A User

UCAN with 💁 ID / email

Describes offer for 🤖

🛂
External OIDC Server

OIDC Login

OIDC Token

Offer for 🤖+💁 
Secured with signature 👽 

and HMAC 💁🛂

💁’s OIDC token?

💁’s OIDC token!

Universal Auth & ID 🗝

💁🤖 👽
Service BService A User

UCAN with 💁 ID / email

Describes offer for 🤖

🛂
External OIDC Server

OIDC Login

OIDC Token

Offer for 🤖+💁 
Secured with signature 👽 

and HMAC 💁🛂

💁’s OIDC token?

💁’s OIDC token!

Check 💁 HMAC and 👽 signature

Universal Auth & ID 🗝

💁🤖 👽
Service BService A User

UCAN with 💁 ID / email

Describes offer for 🤖

🛂
External OIDC Server

OIDC Login

OIDC Token

Offer for 🤖+💁 
Secured with signature 👽 

and HMAC 💁🛂

💁’s OIDC token?

💁’s OIDC token!

Check 💁 HMAC and 👽 signature

Update 🤖 subscription for 💁

Universal Auth & ID 🗝

💁🤖 👽
Service BService A User

UCAN with 💁 ID / email

Describes offer for 🤖

🛂
External OIDC Server

OIDC Login

OIDC Token

Offer for 🤖+💁 
Secured with signature 👽 

and HMAC 💁🛂

💁’s OIDC token?

💁’s OIDC token!

Check 💁 HMAC and 👽 signature

Update 🤖 subscription for 💁

204 Accepted

Summary
🍱

~ Chris McCord, What Makes Phoenix Presence Special

Instead of immediately asking “which database would be best to
hold presences?”, we could ask “how can we best replicate
data in a distributed system without the user having to

worry about it?”. 
 

The platforms you build on top of drive the design decisions you
make in your products. With Elixir, you are empowered to tackle

problems that in other platforms would feel impossible to solve
without tradeoffs with heavy dependencies.

Data > Compute
Getting Ready 🍱

• Focus on data & structure

• Clarify “real” dependencies on data

• Start thinking about the properties in your code

• Adopt OCAP

• Use abstraction for declarative interfaces

🇧🇷 Thank You, CodeBEAM BR 🎉
brooklyn@fission.codes

https://fission.codes

github.com/expede

@expede

mailto:brooklyn@fission.codes
https://noti.st/expede
http://github.com/expede

