
IPVM
The Long-Fabled Execution Layer



IPVM
The Long-Fabled Execution Layer

"The Easiest Way to Run Wasm Everywhere"



IPVM
The Long-Fabled Execution Layer

"The Easiest Way to Run Wasm Everywhere"
The Fastest Way to Ship IPFS Features to Users



IPVM
The Long-Fabled Execution Layer

"The Easiest Way to Run Wasm Everywhere"
The Fastest Way to Ship IPFS Features to Users

A Step Towards IPOS



Agenda

1. What

2. Why

3. Security

4. Scheduling

5. Compute Commons

6. Open Discussion 🌶

Super early days 🌋🦖



IPVM

IP What?



IPVM

IP What?

A blessed VM (Wasm) in every IPFS node


Transparent IPFS node upgrades (like the web) 🎭


Support features like Autocodec


Compute without (required) consensus


Global adaptive optimization


Mobile (ambient) computing



IPVM

What This Gets You



IPVM

What This Gets You

Like data, compute should be ubiquitous


End users and IPFS teams can depend on having compute around


Deep integration with tooling


Fully consistent functionality between clients


Replace AWS's proprietary Lambda with an open protocol + nodes


"The HTTP of Compute" 🤩



Requirements
Working Backwards



Requirements

The Basics



Requirements

The Basics

Portable


Deterministic, verifiable


Purity? Managed effects?


Enforced termination (enabled-by-default?)


Move compute to data / move data to compute


Push & pull both important


(e.g.) UCAN for remote invocation



Requirements

The Basics

Portable


Deterministic, verifiable


Purity? Managed effects?


Enforced termination (enabled-by-default?)


Move compute to data / move data to compute


Push & pull both important


(e.g.) UCAN for remote invocation
https://twitter.com/impurepics



Requirements

Familiarity as Adoption Tactic



Requirements

Familiarity as Adoption Tactic

Bring your own language


Common patterns (e.g. manifests, cron, systemd, build packs)



Requirements

Deep Integration



Requirements

Deep Integration

Lean into content addressing


More than the sum of its parts


Local and remote execution


Reuse Wasm effort, infra, tooling, community experience, etc


FVM, Aquamarine, CloudFlare Workers, Bacalhau, web3.storage invocations, IPFS-FAN



Requirements

Deep Integration

Lean into content addressing


More than the sum of its parts


Local and remote execution


Reuse Wasm effort, infra, tooling, community experience, etc


FVM, Aquamarine, CloudFlare Workers, Bacalhau, web3.storage invocations, IPFS-FAN



Requirements

Juan's Triangle



Requirements

Antigoals?



Requirements

Antigoals?

Suggestions? 🙏



Execution-as-IPLD
Interplanetary Linked Invocation (IPLI)



Execution-as-IPLD

Invocation via IPLD



Execution-as-IPLD

Invocation via IPLD

Description of jobs & results


Index and/or names for later lookup


Streams of results per machine



Execution-as-IPLD

Invocation via IPLD

Description of jobs & results


Index and/or names for later lookup


Streams of results per machine

IPLI

Input

Arguments Scheduling 
Config, etc



Execution-as-IPLD

Invocation via IPLD

Description of jobs & results


Index and/or names for later lookup


Streams of results per machine

IPLI

Input

Arguments Scheduling 
Config, etc

IPLI

Output



Execution-as-IPLD

Invocation via IPLD

Description of jobs & results


Index and/or names for later lookup


Streams of results per machine

IPLI

Input

Arguments Scheduling 
Config, etc

More

(Stats etc)Results

IPLI

Output



Execution-as-IPLD

Job Streams (Scheduler + Events)



Execution-as-IPLD

Job Streams (Scheduler + Events)

Pure Effect Stream

Pure Function Stream

Base Event Stream



Execution-as-IPLD

Job Streams (Scheduler + Events)

Pure Effect Stream

Pure Function Stream

Base Event Stream t→



Execution-as-IPLD

Job Streams (Scheduler + Events)

Pure Effect Stream

Pure Function Stream

Base Event Stream t→



Execution-as-IPLD

Job Streams (Scheduler + Events)

Pure Effect Stream

Pure Function Stream

Base Event Stream t→



Execution-as-IPLD

Job Streams (Scheduler + Events)

Pure Effect Stream

Pure Function Stream

Base Event Stream t→



Execution-as-IPLD

Job Streams (Scheduler + Events)

Pure Effect Stream

Pure Function Stream

Base Event Stream t→



Execution-as-IPLD

With a Little Scale From My Friends



Execution-as-IPLD

With a Little Scale From My Friends

Th
ro

ug
hp

ut

Parallelization 



Execution-as-IPLD

With a Little Scale From My Friends
Ideal (Linear)

Th
ro

ug
hp

ut

Parallelization 



Execution-as-IPLD

With a Little Scale From My Friends
Amdahl’s Law

Ideal (Linear)

Th
ro

ug
hp

ut

Parallelization 



Execution-as-IPLD

With a Little Scale From My Friends
Amdahl’s Law

Ideal (Linear)

Th
ro

ug
hp

ut

Parallelization 

Universal Scaling Law



Execution-as-IPLD

With a Little Scale From My Friends
Amdahl’s Law

Incoherence,

Data Contention

Ideal (Linear)

Th
ro

ug
hp

ut

Parallelization 

Universal Scaling Law



Execution-as-IPLD

With a Little Scale From My Friends
Amdahl’s Law

Incoherence,

Data Contention

Ideal (Linear)
Global Adaptive  

Optimization

🤯

Th
ro

ug
hp

ut

Parallelization 

Universal Scaling Law



Execution-as-IPLD

Cache Intermediate Results



Execution-as-IPLD

Cache Intermediate Results

🚰

🚰



Execution-as-IPLD

Cache Intermediate Results

🚰

🚰



Execution-as-IPLD

Cache Intermediate Results

🚰

🚰



Execution-as-IPLD

Cache Intermediate Results

🚰

🚰

🚰



Execution-as-IPLD

Cache Intermediate Results

🚰

🚰

🚰

Suspend / resume



Execution-as-IPLD

Cache Intermediate Results

🚰

🚰

🚰

Suspend / resume



Execution-as-IPLD

Feedback Loop



Execution-as-IPLD

Feedback Loop

1. Fetch data



Execution-as-IPLD

Feedback Loop

1. Fetch data

2. Compute on data



Execution-as-IPLD

Feedback Loop

1. Fetch data

2. Compute on data

3. Output more data



Execution-as-IPLD

Feedback Loop

1. Fetch data

2. Compute on data

3. Output more data

4. GOTO 2



Execution-as-IPLD

Feedback Loop

1. Fetch data

2. Compute on data

3. Output more data

4. GOTO 2



Execution-as-IPLD

Managed Effects

Pure Effect Stream

Pure Function Stream

Base Event Stream t→



Execution-as-IPLD

Managed Effects

Managed Effect Stream

Pure Effect Stream

Pure Function Stream

Base Event Stream t→



Execution-as-IPLD

Managed Effects

Managed Effect Stream

Pure Effect Stream

Pure Function Stream

Base Event Stream t→



Execution-as-IPLD

Managed Effects

Managed Effect Stream

Pure Effect Stream

Pure Function Stream

Base Event Stream t→



Execution-as-IPLD

Managed Effects

Managed Effect Stream

Pure Effect Stream

Pure Function Stream

Base Event Stream t→



Execution-as-IPLD

Managed Effects

Managed Effect Stream

Pure Effect Stream

Pure Function Stream

Base Event Stream t→

🚀



Execution-as-IPLD

Managed Effects

Managed Effect Stream

Pure Effect Stream

Pure Function Stream

Base Event Stream t→

🚀



IPVM for IPFS Internals
Shipping IPFS in IPFS



IPVM for IPFS Internals

Content Addressing IPFS Itself



IPVM for IPFS Internals

Content Addressing IPFS Itself

New codecs (autocodec)


Cryptography


Smarter chunkers, incremental verifiers


Critical bugfixes


Share effort between projects (Kubo, Iroh, UCAN, WNFS, Skip Ratchet, etc)



Security
How Trusted is Your Execution?



Security

Models

Mobile computing


OCAP, eRights, encryption, UCAN

http://erights.org/elib/concurrency/msg-passing.html



Security

More Capabilities, More Problems



Security

More Capabilities, More Problems

Minimum Viable Capability


Option to switch on more powerful, trusted features


Remote capabilities on other people's systems (service providers, peers, etc)



State Channels
Remote Deals & Execution



State Channels

Eager Job Discovery

Discover providers ("matchmaking DHT")


Register providers, just like a bootstrap list


(Optional) reputation

💁

⚙

⚙

💁

💁

💁



State Channels

Payments



State Channels

Payments

Reuse generalized state channels for (optional) payment, reputation, etc


(Future: hierarchical consensus)



Where to Start
🗺



Where to Start

Bootstrapping First Steps: Brass Tacks



Where to Start

Bootstrapping First Steps: Brass Tacks
Ship Wasm into an IPFS implementation


Manual invocation from CLI


IPLI format experimentation


Concurrent job scheduler, trust & resource limits


Figure out sensible default configs from experience


Experiment with deeper integration: wasm-ipld or similar


Cron, event triggers, etc


Push jobs, associated authZ 



Open Discussion 🌶

Tell me why you


❤ or 💔 these ideas!



Open Discussion 🌶

Tell me why you


❤ or 💔 these ideas!



🎉 Thank You, IPFS þing 🇮🇸

https://fission.codes

brooklyn@fission.codes


@expede





Therefore, the worse-is-better software first will [...]  
be improved to a point that is almost the right thing.  

In concrete terms, even though Lisp compilers in 1987  
were about as good as C compilers, there are many more 

compiler experts who want to make C compilers 
better than want to make Lisp compilers better.

– Richard P. Gabriel, Lisp: Good News, Bad News, How to Win Big (1991)


