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Agenda

1. What

2. Why

3. Security

4. Scheduling

5. Compute Commons

6. Open Discussion 🌶

Super early days 🌋🦖
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A blessed VM (Wasm) in every IPFS node


Transparent IPFS node upgrades (like the web) 🎭


Support features like Autocodec


Compute without (required) consensus


Global adaptive optimization


Mobile (ambient) computing
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Like data, compute should be ubiquitous


End users and IPFS teams can depend on having compute around


Deep integration with tooling


Fully consistent functionality between clients


Replace AWS's proprietary Lambda with an open protocol + nodes


"The HTTP of Compute" 🤩
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Deterministic, verifiable


Purity? Managed effects?


Enforced termination (enabled-by-default?)


Move compute to data / move data to compute


Push & pull both important


(e.g.) UCAN for remote invocation



Requirements

The Basics

Portable


Deterministic, verifiable


Purity? Managed effects?


Enforced termination (enabled-by-default?)


Move compute to data / move data to compute


Push & pull both important


(e.g.) UCAN for remote invocation
https://twitter.com/impurepics
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Familiarity as Adoption Tactic

Bring your own language


Common patterns (e.g. manifests, cron, systemd, build packs)
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Lean into content addressing


More than the sum of its parts


Local and remote execution


Reuse Wasm effort, infra, tooling, community experience, etc


FVM, Aquamarine, CloudFlare Workers, Bacalhau, web3.storage invocations, IPFS-FAN



Requirements

Deep Integration

Lean into content addressing


More than the sum of its parts


Local and remote execution


Reuse Wasm effort, infra, tooling, community experience, etc


FVM, Aquamarine, CloudFlare Workers, Bacalhau, web3.storage invocations, IPFS-FAN



Requirements

Juan's Triangle



Requirements

Antigoals?



Requirements

Antigoals?

Suggestions? 🙏
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Invocation via IPLD

Description of jobs & results


Index and/or names for later lookup


Streams of results per machine

IPLI

Input

Arguments Scheduling 
Config, etc

More

(Stats etc)Results

IPLI

Output
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With a Little Scale From My Friends
Amdahl’s Law

Incoherence,

Data Contention

Ideal (Linear)
Global Adaptive  

Optimization

🤯
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Universal Scaling Law
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Content Addressing IPFS Itself

New codecs (autocodec)


Cryptography


Smarter chunkers, incremental verifiers


Critical bugfixes


Share effort between projects (Kubo, Iroh, UCAN, WNFS, Skip Ratchet, etc)
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Security

Models

Mobile computing


OCAP, eRights, encryption, UCAN

http://erights.org/elib/concurrency/msg-passing.html
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More Capabilities, More Problems

Minimum Viable Capability


Option to switch on more powerful, trusted features


Remote capabilities on other people's systems (service providers, peers, etc)
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State Channels

Eager Job Discovery

Discover providers ("matchmaking DHT")


Register providers, just like a bootstrap list


(Optional) reputation

💁

⚙

⚙

💁

💁

💁
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State Channels

Payments

Reuse generalized state channels for (optional) payment, reputation, etc


(Future: hierarchical consensus)
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Where to Start

Bootstrapping First Steps: Brass Tacks
Ship Wasm into an IPFS implementation


Manual invocation from CLI


IPLI format experimentation


Concurrent job scheduler, trust & resource limits


Figure out sensible default configs from experience


Experiment with deeper integration: wasm-ipld or similar


Cron, event triggers, etc


Push jobs, associated authZ 
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Open Discussion 🌶

Tell me why you


❤ or 💔 these ideas!



🎉 Thank You, IPFS þing 🇮🇸

https://fission.codes

brooklyn@fission.codes


@expede





Therefore, the worse-is-better software first will [...]  
be improved to a point that is almost the right thing.  

In concrete terms, even though Lisp compilers in 1987  
were about as good as C compilers, there are many more 

compiler experts who want to make C compilers 
better than want to make Lisp compilers better.

– Richard P. Gabriel, Lisp: Good News, Bad News, How to Win Big (1991)


