
Network Evolution, The Consistency Treadmill, & Transcending Spacetime
Burn Your Laurels

That's one
heck of a network

partition

Not to be bound by certain ‘obvious’
methodological rules [...] is both reasonable and
absolutely necessary for the growth of

knowledge. [...] There are always circumstances
when it is advisable not only to ignore the rule,

but to adopt its opposite.
– Paul Feyerabend, Against Method

Brooklyn Zelenka
@expede

• CTO at Fission (https://fission.codes)

• Local-first, globally distributed, trustless

• PLT, VMs, DSys

• Original author of Witchcraft, Algae, Exceptional, etc

• Standards: UCAN (editor), EIPs, FVM, Multiformats, others

• Founded VanFP, VanBEAM, DSys Reading Group (join us!)
https://lu.ma/distributed-systems

I have stickers!

Let's Change Everything! (kthxbye)
Meta !

Part I: Empex MTN "

Part II: CodeBEAM EU #

We ❤ BEAM
The BEAM does so much right %

In many ways, we're actually ahead of the industry
...but as our ideas spread, this lead won't last

The world changing around us &'

Let's ask uncomfortable questions to find
 new directions for growth

Meta !

We ❤ BEAM
The BEAM does so much right %

In many ways, we're actually ahead of the industry
...but as our ideas spread, this lead won't last

The world changing around us &'

Let's ask uncomfortable questions to find
 new directions for growth

Meta !

Random Walk

Image by Pradyumna Yadav

(

)

*

Meta !

+

☎→⚗→Gj

A Cambrian Explosion of Approaches!

→
→

→ /
→ .
→ 0→
1

Meta !

CC BY-SA 3.0: mariowiki.com

Let's Go Exploring!
Meta !

Photo credit: Chad Kohalyk

• Has the world meaningfully changed?

• What are the resulting tradeoffs?

• Is anything holding us back?

Avoid Success at All Cost

Meta !

Balance

Avoid Success at All Cost

Meta !

Balance

Where Do We Go From Here?
Meta !

Are processes central?

Context & Consequence
2

How We Got Here

Actors are an amazing fit for cloud computing.
...why?

Actors in the Sky
Context & Consequence 2

Erlang was designed with a specific
objective in mind: “to provide a better way of
programming telephony applications.”

[...] Language features that were
not used were removed.

– Joe Armstrong, A History of Erlang

We All Know the Story
Context & Consequence 2

Good Design Tradeoffs
Context & Consequence 2

Aguilera et al., Designing Far Memory Data Structures: Think Outside the Box (HotOS’19)

3 Near Memory 4 Far Memory

5 Feels Local ✅
7 Hidden, automatic
8 Leaky abstraction
9 Exposing knobs

✉ Feels Remote
7 Powerful control
8 Manual boilerplate
9 Adding abstraction

✅

The Year Was 1994...
Context & Consequence 2

Less is More
Context & Consequence 2

; <
@ <

A <
⚙C
⚙

⚙
>

>

>

B

B

B

E
“Serverless”

(Somehow MORE servers)

• Single source of truth ("the" database)

• Server-centric

• "Full stack development"

• DevOps, Docker, k8s

• How to train enough engineers?

• Infrastructure Hegemony

• AWS (47%), Azure (19%), GCP (9%)

So Much Leakage F
Context & Consequence 2

...how fix?
G

So Much Leakage F
Context & Consequence 2

New Space to Play
Getting Out of the Painted Corner

H

Natural Progression I

JK

LM

Invention Custom Off-the-Shelf Utility

New Space to Play H

N

New Space to Play H

Evolution of Concerns

Physical
Resource

Management

Immaterial
Objects

Distributed
State Machines

Adversaries,
Asynchrony,

Failure, &c
Scalability

Rajsbaum & Raynal, 60 Years of Mastering Concurrent Computing Through Sequential Thinking

O P ⚙ Q R

'60 '70 '80 '90 '00 '10 '20

Mutex

Semaphores

Concurrent
Reads &

Distributed
State Machines

Byzantine Generals
Problem

PAXOS

Wait-Free
Sync

Transactional
Memory

Shared Memory In Message
Passing With Crashes

PBFT

Nakamoto
Consensus

CALM CRDT

zk-SNARKFLP
Impossibility CAP

Twizzler

New Space to Play H

Important Progress, But Early Days

Locality
S

Paradigm Shift

[...] existing infrastructure will not be able to
handle the volumes or the rates

We are absolutely going to return to a peer-to-peer
computing […] not unlike distributed computing

– Andreessen Horowitz, The End of Cloud Computing

Locality S

Users vs Cloud Infra
Locality S

7
6

6

1
1 1

2

1

Source: AWS

Users vs Cloud Infra
Locality S

7
6

6

1
1 1

2

1

~1.4 billion
1400M/centre

371 million
56M/centre

~435 million
435M/centre

Source: AWS

50M

Sending a “Direct” Message
Locality S

⏳UVW

7.2x

Latency is a Physical Limit X
Locality S

• Bandwidth max not even close

• Speed of light causality

• Edge dominates < 40ms

• Best at ~8ms

• 1ms applications exist

• "Ultra Reliable Low Latency"

Ericsson, http://cscn2017.ieee-cscn.org/files/2017/08/Janne_Peisa_Ericsson_CSCN2017.pdf

By 2025, 75% of data will be processed
outside the traditional data centre or cloud
– Gartner, What Edge Computing Means for Infrastructure and Operations Leaders

edge, on device, etc

Locality S

A New Topology
Locality S

j

\
i⚙

☁
i⚙i⚙i⚙i⚙i⚙i⚙

S

j

h
i⚙

j

Aggregation,
Batching,
Training,

OLAP

Realtime,
Storage,
Caching,

OLTP

Relay,
Replication,
Consistency,

Tasks

Local
First

k l

Evolving Toolbox
Locality S

Radical shifts how we think
about auth, locality of reference,

ownership, and reliability

P2P

Cloud

Serverless

Commons Networks

Local-First

Offline
Blockchain

Networked
Data

Consistency is a Lie
m

Let Them Eat CAP

The limitation of local knowledge
is the fundamental fact

about the setting in which we work,
and it is a very powerful limitation

– Nancy Lynch, A Hundred Impossibility Proofs for Distributed Computing

Consistency is a Lie m

• If network partition, pick from:

• Availability (A) ✅ Uptime!

• Consistency (C)

• Else (E) running normally, pick from:

• Latency (L) ✅ Speed!

• Consistency (C)

CAP → PACELC no
Consistency is a Lie m

C

A L

EP

PA/EL

Daniel J. Abadi, Consistency Tradeoffs in Modern Distributed Database System Design

Causal Islands pq
Consistency is a Lie m

"Causal Subjectivity"

Meiklejohn, A Certain Tendency Of The Database Community

As we continue to increase the number of globally
connected devices, we must embrace a design that

considers every single member in the system as the
primary site for the data that it is generates.

It is completely impractical that we can look at a single,

or a small number, of globally distributed data centers as
the primary site for all global information that we desire

to perform computations with.
– Christopher Meiklejohn, A Certain Tendency Of The Database Community

Consistency is a Lie m

PLOP
r

Place & Time

As data becomes increasingly distributed,
traditional RPC and data serialization limits

performance, result in rigidity, and
hamper expressivity

– Bittman et al, Don't Let RPCs Constrain Your API

PLOP r

Small Steps in Aggregate
PLOP r

O9

s⚒
u

u

✉

y

Irreducible Complexity
PLOP r

uvuw ux

✉
✉

✉

✉

✉
✉

✉

✉

✉
✉

✉

✉

OO O
☠

{

Amdahl’s Law

Incoherence,
Data Contention

Ideal (Linear)

Th
ro

ug
hp

ut

Parallelization

Universal Scaling Law

Coordination Costs
PLOP r

Bad Actors
PLOP r

| x

}

Å

These metastable failures have caused
widespread outages at large internet
companies, lasting from minutes to hours.

Paradoxically, the root cause of these failures is
often features that improve the efficiency

or reliability of the system.
– Bronson et al, Metastable Failures in Distributed Systems

And Yet...
PLOP r

The Great 73-Hour Roblox Outage of 2021
PLOP r

https://blog.roblox.com/2022/01/roblox-return-to-service-10-28-10-31-2021/
https://www.theverge.com/2021/10/30/22754107/roblox-down-outage-chipotle-server-issues-status

The Great 73-Hour Roblox Outage of 2021
PLOP r

https://blog.roblox.com/2022/01/roblox-return-to-service-10-28-10-31-2021/
https://www.theverge.com/2021/10/30/22754107/roblox-down-outage-chipotle-server-issues-status

L
Ç

[Streaming was] designed to lower the CPU usage and
network bandwidth of the Consul cluster, [and] worked as

expected [...] In order to prepare for the increased traffic we typically
see at the end of the year, we also increased the number of

nodes supporting traffic routing by 50%. [...] Under very high
load [this] causes blocking during writes, making it significantly

less efficient. This behavior also explained the effect of higher core-
count servers: those servers were dual socket architectures with a

NUMA memory model. The additional contention on shared
resources thus got worse under this architecture.

— Daniel Sturman & co, Roblox Return to Service 10/28-10/31 2021

PLOP r

Paradoxical Performance

Metastable Mechanism
PLOP r

Bronson et al, Metastable Failures in Distributed Systems

⚡

⚖

Metastable Mechanism
PLOP r

Bronson et al, Metastable Failures in Distributed Systems

⚡

⚖

Metastable Mechanism
PLOP r

Bronson et al, Metastable Failures in Distributed Systems

⚡

⚖

Metastable Mechanism
PLOP r

Bronson et al, Metastable Failures in Distributed Systems

⚡

⚖

Ö

Metastable Mechanism
PLOP r

Bronson et al, Metastable Failures in Distributed Systems

⚡

⚖

• Retries / let it crash

• Work amplification

• General thrash Ü

Ö

Places are "a" way to organize concurrency.
They are not "the" way.

Values Over Time
PLOP r

Massive Reliability
á

Nine Nines Is So 1999

You can never step into the same river twice
– Heraclitus

process

Massive Reliability á

• Values are eternal

• Only pointers mutate

• Modular! Mobile! Universal!

• "Pure"

• Compared by equality

Values ≠ References ≠ Processes
Massive Reliability á

• Processes occur over time

• Can move, but always unique

• Actors colocate mutable
references with processes

• Specific interface

• Often limited reuse,
especially when distributed

Decoupling, Abundance, Redundancy
Massive Reliability á

v x

v

à
99.0%

à
99.999%

à
99.99%

à
99.99999%

v
11-nines

Pure Parallel
Massive Reliability á

Commutes!

recipient
msg

upcase

sign

last_update

Email.send

DB.static_fetch

Pure: run anywhere,
by anyone

Massive Reliability á

https://www.cs.umd.edu/~jkatz/papers/ADS.pdf
https://cs.nyu.edu/~fazio/research/publications/accumulators.pdf

âä ã åç é è

ê

1F3 A83 ED2 247 81D F0A B92

0FC C4A 823 D55

CF4ACF

A7B

PIDs for Values & CAS Transactions

Massive Reliability á

https://www.cs.umd.edu/~jkatz/papers/ADS.pdf
https://cs.nyu.edu/~fazio/research/publications/accumulators.pdf

âä ã åç é è

ê

1F3 A83 ED2 247 81D F0A B92

0FC C4A 823 D55

CF4ACF

A7B

PIDs for Values & CAS Transactions

Trustless Modularity
ë

Beyond Services, Beyond Open Source

Jesper, I have this idea in which we’ll connect
all of the worlds Erlang systems to each other,

imagine if every process could talk to
every other process, world-wide!

– Joe Armstrong to Jesper L. Andersen

ALL applications,

even if not pre-negotiated

Trustless Modularity ë

What happens when everything
is reachable by default?

Trustless Modularity ë

PLOP í ACLs
Trustless Modularity ë

✋ï ⚙ì

ñ
In control

Not in control

✋ï

Trustless SPKI
Trustless Modularity ë

⚙õ ú
In control

òó ör✊ ✊PID

r✊ ✊Addr
All req info

Trustless SPKI
Trustless Modularity ë

⚙õ ú

òó ö
ú ú

ö ör✊ ✊PID

r✊ ✊Addr

Trustless SPKI
Trustless Modularity ë

⚙õ ú

òó ör✊ ✊PID

r✊ ✊Addr

Trustless SPKI
Trustless Modularity ë

⚙õ ú

òó ör✊ ✊PID

r✊ ✊Addr ù

Trustless SPKI
Trustless Modularity ë

⚙õ ú

òó ör✊ ✊PID

r✊ ✊Addr ù
r

Trustless SPKI
Trustless Modularity ë

⚙õ ú

òó ör✊ ✊PID

r✊ ✊Addr

|
ú ú

ù
r ö

~ Chris McCord, “What Makes Phoenix Presence Special”

We have a system that applies cutting edge CS
research to tackle day-to-day problems in the
applications we all write.

Phoenix Presence
- has no single point of failure
- has no single source of truth
-[...]
- self heals

Trustless Modularity ë

Phoenix LiveView
Trustless Modularity ë

<

>⚙Users ûü†°

Client <

WSS / REST / GraphQL ↕

Controller Logic ⚙

Data Store >

DevOps £

Developer §

iii

<

⚙

i i

i

Tug of War •¶
Trustless Modularity ë

>S

Tug of War •¶
Trustless Modularity ë

>S

Tug of War •¶
Trustless Modularity ë

>S

LiveView Inside Out ß
Trustless Modularity ë

<
iiiii >

⚙<
i

– Joe Armstrong, Building Highly Available Systems in Erlang
"P2P is the new client-server"

Reading the Universal Dataspace4®
Trustless Modularity ë

ì
≠

Æ

©ç

© ©

©

©™

© ©

I

ñ

© ©

´ñPñ ¨

Different Viewers ~ Schema Drift Ø
Trustless Modularity ë

https://www.inkandswitch.com/cambria.html

Properties & Time Travel
Trustless Modularity ë

The Soul of a New BEAM
Let's Build Better Together

∞ ∞

BEAM Me Up
The Soul of a New BEAM ∞

` ± < ⚙

✨≥4Z✨

...One More Thing
(Neither "Web" Nor "Assembly")

The Soul of a New BEAM ∞

Further Reading ¥
The Soul of a New BEAM ∞

• Peter Alvaro — CALM, Twizzler

• Christopher Meiklejohn— Lasp, Partisan

• Martin Kleppmann — Automerge, BFT-CRDT

• Lindsey Kuper — LVar, Deterministic Parallelism

• Joseph Hellerstein — BOOM, Distributed Logic

• Geoffrey Litt — Cambria, BYOC

1. Embrace the subjective nature of reality µL

2. Values are redundant & cache friendly

3. Openly interoperate from the ground up

4. Massive reliability in a time of abundant disk

5. Build a Wasm solution... stat!

We're Uniquely Qualified
The Soul of a New BEAM ∞

∂ Thank You, Stockholm! #
https://lu.ma/distributed-systems

https://fission.codes/discord
github.com/expede

@expede

https://noti.st/expede
http://github.com/expede

